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Preface

It is indeed a great pleasure to welcome you to the proceedings of the 12th
International Workshop on Combinatorial Image Analysis (IWCIA 2008) held
in Buffalo, NY, April 7–9, 2008.

Image analysis is a scientific discipline providing theoretical foundations and
methods for solving problems that appear in various areas of human practice, as
diverse as medicine, robotics, defense, and security. As a rule, the processed data
are discrete; thus, the “discrete,” or “combinatorial” approach to image analysis
appears to be a natural one and therefore its importance is increasing. In fact,
combinatorial image analysis often provides various advantages (in terms of effi-
ciency and accuracy) over the more traditional approaches based on continuous
models requiring numeric computation.

The IWCIA workshop series provides a forum for researchers throughout
the world to present cutting-edge results in combinatorial image analysis, to
discuss recent advances in this research field, and to promote interaction with
researchers from other countries. In fact, IWCIA 2008 retained and even enriched
the international spirit of these workshops, that had successful prior meetings
in Paris (France) 1991, Ube (Japan) 1992, Washington DC (USA) 1994, Lyon
(France) 1995, Hiroshima (Japan) 1997, Madras (India) 1999, Caen (France)
2000, Philadelphia (USA) 2001, Palermo (Italy) 2003, Auckland (New Zealand)
2004, and Berlin (Germany) 2006. The IWCIA 2008 Program Committee was
highly international as its members are renowned experts coming from 23 differ-
ent countries, and submissions came from 24 countries from Africa, Asia, Europe,
North and South America.

The present volume includes the papers presented at the workshop. Following
the call for papers, IWCIA 2008 received 117 submissions. After a preliminary
screening of all submissions by the Workshop Chairs, 82 of these were reviewed
by Program Committee members or additional reviewers (the others being ob-
viously unacceptable in view of IWCIA standards and technical requirements).
Of these 82 papers, 28 were accepted for oral presentation and 10 for poster
presentation. The review process was quite rigorous, involving three to four in-
dependent double-blind reviews. OpenConf provided a convenient platform for
smoothly carrying out the review process. The most important selection crite-
rion for acceptance or rejection of a paper was the overall score received. Other
criteria included: relevance to the workshop topics, correctness, originality, math-
ematical depth, clarity, and presentation quality. We believe that as a result, only
high-quality papers were accepted for presentation at IWCIA 2008 and for pub-
lication in the present volume. We also hope that many of these papers are of
interest to a broader audience, including researchers working in areas such as
computer vision, image processing, and computer graphics.
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The program of the workshop was arranged into ten sessions. These included
presentations of contributed papers, as well as invited talks by five distinguished
scientists.

An opening talk was given by Herbert Hauptman, Nobel Laureate. He shared
with the audience his vision about science in general, and specifically of math-
ematics and its amazing applicability to other sciences and human practice.
Hauptman supported his theses by a number of interesting examples, in par-
ticular from his own scientific contributions. “The history of science shows that
advances in science, particularly progress in its more basic aspects, including
mathematics, have had the most profound influence in serving to improve the
quality of life and making possible development of a modern advanced techno-
logical society,” Hauptman said.

“Can a computer recognize the activities of a person, e.g., one fighting another
person or one climbing a fence? Can a computer recognize an illegally parked
car?” Jake Aggarwal asked, and continued: “Computer vision has matured to a
discipline that addresses societal problems: monitoring public places—what is a
person doing? Leaving an unattended bag, climbing a fence or breaking into a
car are examples of action recognition.” In his invited talk, the speaker presented
his recent research on human motion understanding, modeling and recognition
of human faces, actions and interactions, as well as human–object interactions.

Polina Golland considered the problem of identifying large co-activating net-
works in brain based on dynamical imaging, and proposed an approach leading
to hierarchical, anatomically meaningful representations of brain activity across
experiments and across subjects. “This way we are able to effectively decompose
the four-dimensional collection of the activation values into spatial maps that
align with our notion of anatomical structure of the brain and the dynamics
associated with these maps,” Golland said.

Arie Kaufman presented a new research area known as virtual colonoscopy.
It is a combination of computed tomography scanning and volume visualiza-
tion technology, and incorporates a novel pipeline of computer-aided detec-
tion of colonic polyps employing segmentation, electronic cleansing, conformal
colon flattening, volume rendering with texture, and shape analysis. “Virtual
colonoscopy is poised to become the procedure of choice in lieu of the conven-
tional optical colonoscopy for mass screening for colon polyps—the precursor of
colorectal cancer,” Kaufman said.

The workshop scientific program was completed by the invited closing talk
of Gabor Herman. He presented a methodology for translating the problem of
classification of heterogeneous microscopic projections into homogeneous sub-
sets into an optimization problem on a graph. He also provided a combinatorial
algorithm that achieves a useful solution at a low computational cost. “The pro-
posed methodology makes it possible to visualize the functioning of a biological
molecular machine,” Herman said.

In addition to the main theoretical track of IWCIA 2008, for the first time
a Special Track on Applications was organized. It provided researchers and
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software developers with the opportunity to present their work and demonstrate
working computer systems for image analysis.

Many individuals and organizations contributed to the success of IWCIA
2008. First of all, the Chairs are indebted to IWCIA’s Steering Committee for
endorsing the candidacy of Buffalo for the 12th edition of the Workshop. Our
most sincere thanks go to the IWCIA 2008 Program Committee whose cooper-
ation in carrying out high-quality reviews was essential in establishing a very
strong workshop program. We also appreciate the assistance of the additional
reviewers who helped us maintain the timeline for the review process and au-
thor notification. We express our sincere gratitude to the invited speakers Jake
Aggarwal, Polina Golland, Herbert Hauptman, Gabor Herman, and Arie Kauf-
man for their remarkable talks and overall contribution to the workshop pro-
gram. We wish to thank everybody who submitted their work to IWCIA 2008.
Thanks to their contributions, we succeeded in having a technical program of
high scientific quality. We are indebted to all participants and especially to the
contributors of this volume.

The success of the workshop would not be possible without the hard work
of the local Organizing Committee. We are grateful to Joaquin Carbonara,
Dan Cunningham, François de Vieilleville, Peter Mercer, Mike Szocki, Khalid
Siddiqui, and João Tavares for their valuable work. We are obliged to SUNY
Buffalo State College and SUNY Fredonia for the continuous support through
their designated offices. Special thanks go to Muriel Howard, President of SUNY
Buffalo State, and Dennis Hefner, President of SUNY Fredonia, for endorsing
IWCIA 2008, to Dennis Ponton, Provost of Buffalo State, for his strong support,
and to Larry Flood, Dean of the School of Natural and Social Sciences at Buf-
falo State, for continuously promoting the workshop since its very early stages.
We also remember with gratitude the assistance provided by several students
from Buffalo State and all who made this conference an enjoyable and fruitful
scientific event. Finally, we wish to thank Springer for the pleasant cooperation
in the timely production of this volume.

April 2008 Valentin E. Brimkov
Reneta P. Barneva

Herbert A. Hauptman
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Connectivity Preserving Voxel Transformation

Anvesh Komuravelli1, Arnab Sinha2, and Arijit Bishnu1

1 Computer Science and Engineering Department, Indian Institute of Technology,
Kharagpur, Kharagpur-721302, India

{anvesh,bishnu}@cse.iitkgp.ernet.in
2 Dept. of Electrical Engineering, Princeton University, Princeton,

New Jersey, USA-08544
sinha@princeton.edu

Abstract. A three dimensional digital binary image is B26 connected
if its set of black voxels is 26-connected, i.e. for all black voxels there
exists at least one black voxel among its 26 neighbors. We show that any
two such images I and J of c1 and c2 number of connected components
respectively and n voxels each, can be transformed into one another
maintaining the B26 connectivity of the black voxels by O((c1 + c2)n

2)
interchanges.

1 Introduction

A three (two) dimensional digital binary image (I) is a function I : Z
3 → {0, 1}

(I : Z
2 → {0, 1}). Any element in Z

3 (Z2) is called a voxel (pixel). We consider
finitely many lattice points (voxels/pixels) from Z

3 (Z2) in I. A voxel (pixel) p
is black (white) if I(p) = 1 (I(p) = 0). We call two pixels (x1, y1) and (x2, y2)
to be 8-neighbors if and only if (x1 − x2)2 + (y1 − y2)2 ≤ 2. For 4-neighbors,
it is (x1 − x2)2 + (y1 − y2)2 ≤ 1. We call two voxels (x1, y1, z1) and (x2, y2, z2)
to be 26-neighbors if and only if (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 ≤ 3. This
induces a graph G26 whose vertex set is Z

3 and there exist edges between two
lattice points satisfying the above inequality. In a 3-D binary image I, B26 is a
sub-graph of G26 induced by the black voxels in I. Similar graphs can be defined
for 2-D binary images also. A pair of neighboring (4 or 8) [4] opposite-valued
pixels in a 2-D binary image I is called interchangeable if reversing their values
preserves the topology of the image [5,6]. The interchange does not affect the
number of 0s and 1s in I. We will define interchangeable voxel pair later on.
Two 2-D binary images I and J are called IP-equivalent [5,6] if there exists
a sequence of binary images I = I0, I1, . . . , Ii, . . . , Ik = J such that any Ii

(1 ≤ i ≤ k) can be obtained from Ii−1 by reversing an interchangeable pixel pair.
Rosenfeld and Nakamura [6] proved the conjecture made in [5] that if two binary
images I and J have two simply connected sets S and T respectively of the same
number of 1s, then I and J are IP-equivalent. In a recent comprehensive work
that also deals with the combinatorial bounds on the number of interchanges,
Bose et al. [1] generalized the results in [6]. They showed that for any (a, b) ∈
{(4, 8), (8, 4), (8, 8)}, any two Ba,Wb-connected images I and J each with n

V.E. Brimkov, R.P. Barneva, H.A. Hauptman (Eds.): IWCIA 2008, LNCS 4958, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 A. Komuravelli, A. Sinha, and A. Bishnu

black pixels differ by a sequence of O(n2) interchanges. The corresponding result
for two B4,W4 connected images is O(n4). A binary image I is called Ba,Wb

(a, b ∈ {4, 8}) connected if its foreground (1) is a-connected and its background
(0) is b-connected. The interchanges considered by Bose et al. [1] are also of
interchangeable pixel pairs such that the connectivity of both foreground and
background are maintained as in [5,6]. This sort of transformation problems
has motivation in robotics [2] where researchers are interested in the number of
moves needed in going from a configuration to another under some restrictions
in the movement patterns. Under a more restricted and complex interchange
rule, Dumitrescu and Pach [3] show that any two B4 connected images are apart
by O(n2) interchanges where an interchange takes place between two 8-neighbor
pixels such that the image obtained after the interchange is still B4 connected.
Though Dumitrescu and Pach talk of modular metamorphic systems in terms of
motion planning in [3], a connection to pixels is straightforward.

In this work, we consider connectivity preserving voxel transformation of 3-D
binary images under a very relaxed and simple model of connectivity. To the best
of our knowledge, connectivity preserving voxel transformation has not been con-
sidered earlier. Section 2 discusses preliminaries needed for our work. Section 3
discusses the main body of our work. In Section 4, we discuss connectivity pre-
serving voxel transformation under the model proposed in [2] for 2-D.

2 Preliminaries

2.1 Definition and Notations

Our model is simple as we do not consider the connectivity of the white voxels.
The earlier works in 2-D [5,6,1] consider connectivity of both black and white
pixels. We think considering this simple model is worthwhile for an initial study
on connectivity preserving voxel transformation.

We call a pair of neighboring (26) opposite-valued voxels in I interchangeable if
reversing their values preserves the B26 connectivity of the 3-D image. The inter-
change obviously does not affect the number of 0s and 1s in I. Two B26 connected
3-D binary images I and J of the same number of voxels are called transformable
if there exists a sequence of 3-D binary images I = I0, I1, . . . , Ii, . . . , Ik = J such
that any Ii (1 ≤ i ≤ k) can be obtained from Ii−1 by reversing an interchange-
able voxel pair. We show in this work that any two 3-D binary images I and J
which are B26 connected and have the same number of voxels are transformable.
We do this by transforming I to a linear chain of voxels. So, it follows that J
can also be transformed to a linear chain of voxels; and the transformation of
I to J can be obtained by transforming I to a linear chain of voxels and then
retracing the transformation (of J) from the linear chain of voxels back to J .

Following are the definitions of the terms we will be using throughout. See
Fig. 1. When a voxel moves because of the interchanges such that its z-coordinate
remains unaffected, we use the term pixel also. In the body of the text, we inter-
changeably use the term voxel and pixel.
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Layer: A 3-D object spans over some layers, where each layer contains a 2D
structure.

Connectivity-sensitive pixel: Consider the topmost layer (let it be Layer 1) of
Fig. 1(a). As the object is connected, there must exist at least one pixel
Player1 which has a 26-neighbor in the layer just below it. We denote such
pixels as connectivity-sensitive pixels. For the preservation of connectivity,
one of these connectivity-sensitive pixels are not interchanged during the first
part of the transformation, as the layers present below are hanging from that
particular pixel of the top-layer.

Merge Axis: Merge axis (M(P )) is a coordinate axis passing through pixel P
and the pixels lying on it are defined to be non-interchangeable through-
out the first part of the transformation. A merge-axis contains at least one
connectivity-sensitive pixel. Figure 1(a) shows M(Player1), M(Player2) and
M(Player3) in Layer 1, Layer 2 and Layer 3 respectively. All the pixels of the
given 2D component are finally brought onto or merged on this axis using
connectivity preserving interchanges. Where P is obvious, we use just M.

Level: In a given layer and in a given connected component in that layer, a level
is the shortest distance of a pixel of that component, from the Merge Axis.

Cut and Non-cut pixels: A pixel whose removal disconnects the originally con-
nected component is a cut-pixel, otherwise it is non-cut.

Coordinate Axes: For any black pixel on a 2D layer, its four coordinate axes
determine the direction in which the adjacent black pixels are located. The
coordinate axes through pixel P in Fig. 1(b) are the following (i) A(P )v

(vertical axis), (ii) A(P )h (horizontal axis), (iii) A(P )45 (making 45◦ with
A(P )h) and (iv) A(P )−45 (making -45◦ with A(P )h).

Player3

Player1

Merge axis

Merge axis

P’layer2 Player2

Merge axis

Layer 1

Layer 2

Layer 3

(a)

P

A(P)v

A(P)-45

A(P)45

A(P)h

(b)

Fig. 1. (a) The 3D object in different layers. The adjacency between Player1 and Player2

(P ′
layer2 and Player3) maintains the connectivity across Layer 1 and Layer 2 (Layer 2

and Layer 3). (b) The coordinate axes through a given P .
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Merge Path: Extending the concept of Merge Axis, a Merge Path is a path (not
necessarily a straight line) on which we finally merge all the pixels.

We use G = (V, E) to denote a graph, where V denotes the set of vertices and
E, the set of edges between the vertices. Complexity Analysis, wherever used,
denotes the number of interchanges between black and white voxels required for
the particular algorithm.

2.2 Solution Strategy

In this problem, our fundamental strategy is to attack the 2D layers of a B8-
connected finite binary image found in a B26-connected 3D object. In a given 2D
layer, a pixel can have at most 8 neighbors. Hence, we borrow from Bose et al.
[1] the idea of transforming any 2D binary image into a vertical image, ensuring
that the object preserves connectivity during the transformation. However, we
cannot directly adopt the strategy in [1] since the vertical image produced in
the 2D plane is unique and in our case might snap the connectivity between two
layers. A general case of the problem may have the images I and J such that,
each layer has more than one connected component of black pixels.

Define a graph G = (V, E), such that (i) each connected component in any
layer corresponds to a node in V , and (ii) for any two connected components, C1

and C2, if there is at least one pair of voxels (u, v) which are B26 adjacent, with
u ∈ C1 and v ∈ C2, then we have an edge. It is easy to see that, as the black
pixels in the original image I are connected, G is connected. Let G′ = (V, E′)
be any spanning tree of G. We know from the definition of a spanning tree that,
as long as G remains connected G′ also remains connected, thus satisfying the
principal constraint behind the transformation. So, it is sufficient to consider
G′, instead of G. Also, we know that every spanning tree has at least one node
whose degree is equal to one.

3 The Strategy for Voxel Transformation

Before we discuss the actual algorithm we discuss below a construction which is
frequently used in the algorithm.

3.1 Construction of 2D Linear Chains

Given a node in G′ with degree one, we need to consider only one connectivity-
sensitive pixel in the component represented by the node to preserve the connec-
tivity. So, a Merge Axis can be any coordinate axis passing through that pixel.
Now, the rest of the black pixels (which do not originally lie on the merge axis)
are interchanged preserving the connectivity such that they finally appear as a
linearly connected chain along the merge-axis.

The strategy can be outlined as follows. We compress the 2D region, step
by step, from the boundary, simultaneously expanding on the merge axis, M.
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M

P

(a)

M

P
Q

(b)

M

Q

P

(c)

M
R S T

Q

P

(d)

Fig. 2. (a) This shows a connected component in a layer. P is a non-cut pixel and
M , the Merge Axis. (b) This shows P in its new position after the interchange with
its adjacent white pixel. (c) P is interchanged with white pixels twice more. (d) P is
finally placed on M . This leaves all other pixels on the boundary to be cut pixels. Q
is one such pixel. The oval region shows the disconnectivity on the Merge Axis before
collapsing the cut pixels.

Ultimately, we have the linear connected chain onM of all the pixels originally
in the 2D plane. Now, we describe our algorithm.

Take a non-cut pixel (if any) on the boundary, other than those onM. Clearly,
its removal doesn’t disconnect the rest of the black region. Hence, we move it
along the boundary until we first reachM, interchanging with the white pixels
that come in the way. This clearly maintains connectivity of the black pixels.
Place it on M, by interchanging with the white pixel already present.

We repeat the above process till all the non-cut pixels are exhausted. Now,
we are left with only cut pixels on the boundary (if any).

Figure 2(a) shows the part of the original image, which is of concern (one
layer). The movement of the non-cut pixel P along the boundary to the merge
axisM is shown in Fig. 2(b) to Fig. 2(d).

Lemma 1. Consider the situation when all the black pixels on the boundary,
not on M, are cut pixels. Also consider a part of the boundary which starts and
ends on M and let ma and mb be a pair of black pixels onM through which the
cut pixels on this part of the boundary are connected to M. Now, ma and mb

are connected only through this part of the boundary. Moreover, this is true for
every such part of the boundary.

Proof. Let us suppose that we have another path connecting ma and mb. This
clearly implies that there is a non-cut pixel on the part of the boundary con-
tradicting the hypothesis. The same argument follows for all such parts of the
boundary. ��
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P

(a)

P

(b)

MP

QR

(c)

Fig. 3. (a) One possible location of P , the leftmost pixel on the topmost level. (b) The
other possible location of P . (c) The cut pixel Q is collapsed onto the previous level,
exposing a non-cut pixel R.

For an illustration, Fig. 2(d) shows a discontinuity on M with all the black
pixels on the boundary and not onM being cut pixels. The pixels S and T are
connected only through this boundary.

So, our goal is to fill the gaps between the two ends on M. Consider the
leftmost pixel in the topmost level, say P . As this is the topmost level, this pixel
has no B8 neighbors in the level above or to the left of it. Now, considering the
remaining possibilities the only two situations where there are no non-cut pixels
on the boundary are illustrated in Fig. 3. As it is clear from the figure, filling up
of the gaps onM can be clearly done by collapsing P to the level below it.

Figure 3(c) shows the collapsing of Q for example. Q is interchanged with
the pixel right below it. This is formed from Fig. 2(d). It is easy to see that
collapsing preserves connectivity.

We continue collapsing. If this results in a new non-cut pixel, we go for the
next iteration.

Complexity Analysis: Assume that the total number of pixels in the 2D region
is n. Any pixel can be a cut or a non-cut pixel at any point of time during the
transformation. If it is a non-cut pixel, and if it is chosen to be moved along
the boundary to M, it takes O(n) interchanges to reach M, as the boundary
contains at most n pixels. If it is a cut pixel, all pixels other than those on M
are cut pixels and this particular pixel has been chosen to be collapsed to a level
below it, then it takes one interchange to do so. There can be at most n such
interchanges for any particular pixel. Hence, for any pixel, it takes at most O(n)
interchanges and therefore, the complexity is O(n2).

3.2 Algorithm-Part I

Let u be a node with degree one in G′ and also let (u, v) be the edge emerging
from u. In other words, the components represented by u and v, say U and V
respectively, have at least one B26 adjacent voxel pair (vu, vv), with vu ∈ U and
vv ∈ V . As the degree of u in G′ is one, we develop a strategy to merge U with V .

To make the merging easier, we first form a single straight chain of all the
pixels on U . The merge axisM for U can be in any direction. So, let us fix it to
be horizontal. We merge all the black pixels in U on M.

Let us suppose that U and V are in a layers i and i + 1 (i− 1), respectively.
Again, to make merging easier we takeM to such a location on layer i that the
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top view of these two components U and V looks like, M protruding out from
the boundary of V . So, we translate M horizontally, in the layer in which U is
present, say i, till any further move removes the connectivity between U and V ,
using the procedure described below.

Translation: The idea behind translation is simple. We move pixel by pixel.
Figure 4 shows an example of how we do it. The extreme pixel is moved first
followed by the next farthest pixel. A given pixel gets displaced O(n) times.
There are O(n) pixels to be moved. Hence, the complexity for translation is
O(n2).

Fig. 4. Here P1 and P2 needed to be displaced. In this illustration, the transformation
of P1 is shown. P1 is moved along the chain (for preserving the connectivity) and
brought back to the chain whenever the first white pixel is found. The displacement of
P2 can be similarly done.

If U intersects with any other connected component in the layer i either
during the process of merging onM or during the process of translation, we do
the following.

1. We stop the process.
2. We consider the compound component formed by U and the component with

which it intersects instead of the original components.
3. We build a new G and form the new spanning tree, G′.
4. We go for the next iteration.

Note that, U might have established new links with other components in layers
i− 1 and i + 1. Figure 5 shows an illustration of this part.

Complexity (Part I): Let nu and nv be the number of black pixels in U and
V respectively. From our earlier discussions, merging all nu pixels on M
takes O(n2

u) interchanges. As translatingM horizontally by one pixel takes
O(nu) interchanges, the entire translation phase takes O(nunv) interchanges.
If any process has to be stopped in the middle, then a new iteration has to
be started after making some changes, mentioned above.
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U

V

(a)

U

V

(b)

U

V

(c)

Fig. 5. (a) The pixels in U have been merged on to its Merge Axis. This shows all
the adjacencies. (b) Two of the pixels have been translated by the procedure described
above. (c) The situation after the entire translation.

3.3 Algorithm-Part II

Now, we merge the chain in U with the layer containing V . The pixels can be
merged in any order but we restrict to one particular order, namely, from the
end of the Merge Axis on U which is B26 adjacent to a pixel on V to the other
end. There are two possibilities.

Case I: U has developed new B26 adjacencies with some voxels of other com-
ponents in the layer containing V .

Case II: No such adjacency has been developed.

It is very well possible that some other edge between U and any other component
W in G got snapped. Case II is the easiest of the two. All we need to do is, keep
interchanging the voxels onM in U , with the white voxels in the layer containing
V starting from either end ofM. Figure 6 shows an example. It is easy to see that
the complexity in this case is O(nu). Now, let us consider Case I. Then, there is a
possibility that, if we follow the same steps as suggested above for Case II, after
certain number of steps, we encounter another connected component. Figure 7
shows an example. If we encounter such a component, we adopt a sequence of
steps, similar to those considered in Part I.

U

V

(a)

V

(b)

Fig. 6. (a) Starting from the situation in Fig. 5(c) a pixel has been merged with V .
(b) All pixels on U have been merged onto V .
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U

V W

Fig. 7. U develops new adjacencies with W , during translation

1. We stop the process. This may be the end of the process.
2. We consider the compound component formed by V and the other component

in the same layer which we encountered, along with the pixels interchanged
between U and this layer by now, instead of V and that other component.

3. We update U. U now contains fewer pixels on the chainM.
4. We rebuild G and form the new spanning tree, G′.
5. We start a new iteration.

3.4 Proof of Correctness and Overall Complexity

Lemma 2. The algorithm suggested above, eventually leads us to the interme-
diate structure, a single chain containing all the black voxels in the original
image I.

Proof. In one pass through Part I of the algorithm, we either merge U with
another connected component in the same layer, i, or move the chain, M to a
new location, again in the same layer, i. So, decrease in |V | in Part I is less than
or equal to one. In one pass through Part II of the algorithm, we merge either
U with V or V with some other connected component in its layer or both. So,
decrease in |V | is either one or two.

Now, if any pass through Part I merges two connected components, we don’t
touch Part II until again we pass through Part I, as a new iteration is started.
If the pass through Part I doesn’t merge but, simply translates U to a new
location, we definitely pass through Part II and this guarantees that at least
two components will be merged. Hence, each iteration through the algorithm
reduces |V | by at least one and therefore, after at most |V |−1 iterations, we are
left with a single component. Now, we can formM for this single component in
any direction starting from anywhere and form the single chain. ��
Let us find the complexity of an iteration. Assume that component i has ni

number of black pixels and that there are c components in total. Note that,
components in a particular layer may be disconnected but they can be con-
nected using voxels of layers above and below. Let

∑c
i=1 ni = n. We divide the

complexity calculation into two parts as follows.

1. Merging of all the pixels in a single component.
2. Merging of different components.
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Merging a component of ni black pixels onto its Merge Axis takes O(n2
i ) in-

terchanges. Now, during the process, if this intersects with another component
with nj number of black pixels, we simply start a new iteration. Let nk be the
total number of pixels of the component on which this Merge Axis has to be
merged. Translation of the Merge Axis takes O(nink) interchanges if it doesn’t
intersect with any other component. Else, we simply start a new iteration. Once
translation is done, merging takes O(ni) interchanges if it’s Case II. In Case I,
we have to start a new iteration somewhere in the middle.

So, the worst case complexity of an iteration is

O(n2
i ) + O(nink) + O(ni) = O(n2

i + nink)

And the overall worst case complexity is simply a summation of the above
complexity over all the iterations. From Lemma 2 it is clear that the number of
iterations is at most c−1. Note that ni, nk may change after every iteration due
to merging of components. In any case, ni and nk are O(n). So, an upper bound
of the complexity is

Σc−1
i,k=1O(n2

i + nink) = Σc−1
1 O(n2) = O(cn2)

Theorem 1. Given any two binary images I and J with c1 and c2 number of
connected components respectively and n voxels each, both can be transformed
into one another maintaining the original connectivity of the black voxels by
O((c1 + c2)n2) interchanges.

Proof. The theorem follows from Lemma 2 and the above discussion. ��

4 Voxel Transformation under a Different Connectivity
Model

In the model presented till now, a valid interchange is taken as such an inter-
change between any two B26 adjacent black and white voxels, which preserves
the connectivity of the image before and after the interchange. A slightly dif-
ferent model can be obtained if we impose a single backbone condition [2] along
with our original connectivity model. Dumitrescu and Pach [3] also consider this
as an alternative model. In our case, a backbone is defined as the set of all black
voxels except the one which we currently interchange. The condition is that the
backbone must be B26 connected at any given point of time. In order to adopt
this model, we only need to make small changes in our algorithm.

First, note that, in the algorithm we described, there are only two situations
where the single backbone condition fails.

1. While collapsing the pixels on the boundary when all the non-cut pixels not
on Merge Axis are exhausted to form the 2D linearly connected chains.

2. While merging the translated Merge Axis with a component in an adjacent
layer.
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First Situation: While forming the 2D linearly connected chains, instead of
collapsing the pixels to the level below when all the pixels on the boundary are
cut, we can move the black pixels between ma and mb on the Merge Axis (refer
Lemma 1) to one of the extreme ends of the axis (through interchanges). This
is similar to the Translation, mentioned in Part I in Section 3.2. So, ultimately
what we have is a Merge Path which is the union of two parts of the original
Merge Axis and the cut black pixels on the boundary. For example, consider
Fig. 2(d). The pixels R, S and T have to be translated to the ends of M .

This can be easily adopted to the algorithm discussed. We need to con-
sider only one connectivity-sensitive pixel for each 2D connected component.
So, we can easily decide which part of the Merge Axis is to be extended and
which part should be left untouched (depending on which part the connectivity-
sensitive pixel lies on). For example, suppose that in Fig. 2(d), the pixel R is
the connectivity-sensitive pixel. We should not move R during the translation
mentioned above. So, a possible and easy solution is to translate all the pixels
starting from the rightmost end of M till T to the left end of M . Then, translate
S. And we end up with the Merge Path.

Now, we are left with bending the Merge Path to a straight line. The only
curvy portion is that of the chain of black pixels. Again, in a similar manner,
considering the above example, translate each pixel on the chain, starting from
the right end to the left end of M .

Second Situation: We only need to change the order in which the pixels on
the Merge Axis are merged with the component in the other layer. Note that
the end of the Merge Axis other than the one whose removal disconnects the
components, is a non-cut pixel. So, we can merge starting from that end, just
the opposite way we mentioned in Section 3.3. Now, clearly, interchanging with
a non-cut pixel maintains the backbone’s connectivity. The only problem is with
Case I of the Section 3.3. The new adjacencies are at the very end where we have
non-cut pixels. One possible solution is starting from this end, find the first pixel
which is not B26 adjacent with any of the pixels in the new component which
the Case I refers to. So, starting from this pixel (which is clearly non-cut) keep
merging till the other end. The rest of the algorithm follows.

The changes mentioned in both the above mentioned situations do not change
the complexity.

5 Conclusion

To conclude, we have shown that two 3D binary images I and J of c1 and c2

components differ by a sequence of O((c1 + c2)n2) 26-local interchanges preserv-
ing the original black connectivity. We also discussed an alternative approach
to fit into a slightly different model in Section 4. One possible extension to the
algorithm would be to consider a more general model where we try to preserve
the connectivity of the white pixels (background) along with that of the black
voxels (foreground).
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Abstract. This paper deals with a thinning algorithm proposed in 2001
by Kovalevsky, for 2D binary images modelled by cell complexes, or,
equivalently, by Alexandroff T0 spaces. We apply the general proposal of
Kovalevsky to cell complexes corresponding to the three possible normal
tilings of congruent convex polygons in the plane: the quadratic, the tri-
angular, and the hexagonal tilings. For this case, we give a theoretical
foundation of Kovalevsky’s thinning algorithm: We prove that for any
cell, local simplicity is sufficient to satisfy simplicity, and that both are
equivalent for certain cells. Moreover, we show that the parallel realiza-
tion of the algorithm preserves topology, in the sense that the numbers
of connected components both of the object and of the background, re-
main the same. The paper presents examples of skeletons obtained from
the implementation of the algorithm for each of the three cell complexes
under consideration.

Keywords: parallel thinning, 2D binary images, simple cell, locally sim-
ple cell, cellular complex, cell complex, Alexandroff space, Kovalevsky
skeleton.

1 Introduction

This paper deals with theoretical aspects of thinning on 2D binary images. Thin-
ning is an important and widely used preprocessing method in digital image
processing, in order to facilitate the classification or recognition of objects of in-
terest. In the case of binary digital images, where the set of objects has already
been determined, thinning is an iterative procedure which produces a particular
subset, named skeleton, from the set of all object elements. The skeleton should
represent topological properties like connectedness, as well as geometrical prop-
erties related to size and form, of the object. At the same time, the skeleton
should have as less as possible elements. During thinning, in each iteration, sim-
ple and non-final object elements are deleted from the “frontier” of the remaining
object. Due to [17], final elements are situated at the end of arcs, which should
be part of the skeleton, and simple elements are those whose deletion preserves
the connectedness both of the object and of the background. In the spirit of this
idea, we define the following:
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Definition 1. A thinning method, to be applied to an object within a 2D binary
image, is said to preserve topology, whenever it preserves both the number of
connected components of the object and the number of connected components of
the background.

Important theoretical questions about thinning are,
1) the characterization of simplicity by local properties considered only within
certain neighborhood of the element, for example, by a local simplicity.
2) the question if a proposed method can be parallelized, that means, if the
parallel implementation of the method preserves topology.

What “connected component”, “frontier”, “simple”, and “final” mean, de-
pends on the mathematical model used for the (domain of the) digital image.
Digital images are usually modelled by adjacency graphs. In particular, for 2D
digital binary images, the (4,8)- and (8,4)- adjacency graphs are applied, but
there are also proposals for adjacency graphs related to the triangular and hexag-
onal tilings of the plane [2]. Theoretical treatments in a more general setting have
been published, for example by Saha et al ([18], [6]), and by Kong [4].

The domain of a digital image can be alternatively modelled by a cell complex,
or, equivalently, by an Alexandroff T0 space. This model has been introduced,
justified, defended and applied by Kovalevsky, see for example [7], [8], [9], [10],
[11], but also by other authors, see for example [5], [20] and [21]. In this regard, in
a short note within [8], a thinning method was proposed, which seems to be the
first proposal of a thinning algorithm on cell complexes. The same method was
shortly described within [9] and [10], each time with augmented detail, but not
enough to cover the theoretical background of this method. Due to our opinion,
thinning on cell complexes is a very interesting topic, and the publications [8],
[9] and [10] opened many theoretical questions, which provided the motivation of
our investigations. The scope of our paper is to give some theoretical foundation
of Kovalevsky’s thinning method. In this context, we will answer both theoretical
questions cited above: First, we prove that a local simplicity is sufficient to satisfy
simplicity, and that both are equivalent for certain elements. Second, we show
that Kovalevsky’s thinning method can be parallelized, by showing that the
parallel realization of the method preserves topology.

The paper is organized as follows: In sections 2 and 3, preliminaries about cell
complexes and their corresponding Alexandroff topological spaces, and impor-
tant suppositions for this paper, are presented. In section 4, the relation between
simplicity and local simplicity, as well as a characterization of simplicity by a
connectivity number, are studied. Section 5 presents and analyzes Kovalevsky’s
thinning algorithm. Section 6 presents an idea to prove that the parallel imple-
mentation of Kovalevsky’s algorithm preserves topology. Section 7 shows some
examples of the application of Kovalevsky’s algorithm, and section 8 contains
concluding remarks.

In this conference paper, only the main ideas of the proofs are presented.
All properties presented in this paper are proved in detail, under the same sup-
positions, in [13]. All proofs will be presented in detail, under more general
suppositions, within a forthcoming journal paper.
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Throughout the paper, ZZ denotes the set of integer numbers, and IR the set
of real numbers. In a topological space X , for M ⊆ X , clX(M) denotes the
closure of M , intX(M) is the interior of M , frX(M) is the frontier of M , but
we omit the index X if we work only in one space X . We denote by IR2 the
Euclidean plane, equipped with the standard topology. For a finite set M , |M |
denotes the number of its elements. For a subset M of a set X , M c denotes its
complement X \M .

2 Cell Complexes

Recall the definition of a cell complex, from [16], as it has been used in many
papers of Kovalevsky:

Definition 2. An abstract cell complex is a structure (X,≤, dim), where
(X,≤) is a poset (partially ordered set, that is, ≤ is a binary reflexive tran-
sitive and antisymmetric relation on the set X), and dim : X → IN ∪ {0} is a
function such that x ≤ y implies that dim(x) ≤ dim(y), for any x ∈ X. The
elements of X are called cells, and, for x, y ∈ X, if dim(x) = k, x is named
k-cell. The dimension of (X,≤, dim) is defined by sup{dim(x) : x ∈ X}.

If X = (X,≤, dim) is an abstract cell complex, then a subcomplex M =
(M,≤M , dimM ) of X is entirely determined by the subset M ⊆ X , by defining
≤M as the restriction of ≤ onto M ×M , and dimM as the restriction of the
function dim onto M .

In this paper, we consider particular abstract cell complexes, related to the
three normal tilings of congruent regular convex polygons in the Euclidean plane
IR2. Recall that a normal tiling of the plane is a family of (closed) polygons
whose union covers the plane, and where any intersection of two polygons, if
non-empty, is a common side of both polygons, or a unique common vertex. It is
well-known that there exist only three normal tilings of the plane whose elements
are congruent convex regular polygons: the quadratic one (where all polygons
are congruent to the same square), the triangular one (where the polygons are
congruent to an equilateral triangle), and the hexagonal one (where the polygons
are congruent to a regular hexagon), see section 8.3 of [15].

There is a natural bounding relation on the set C of all polygons of a tiling
T , and all their sides and vertices: let M and N be subsets of IR2 each of which
is an element of C, then define M ≤ N if and only if M ⊆ clIR2(N). Whereas
the elements of C are considered as closed subsets of IR2 in [3], we consider C
to be a decomposition of IR2, so, the polygons are supposed to be open sets in
IR2, and each side is considered without its end points.

There is a natural dimension on the set C of all polygons, sides of polygons,
and vertices of polygons of T , given for any x ∈ C, by dim(x) = 2 if x is a
polygon, dim(x) = 1 if x is a side, and dim(x) = 0 if x is a vertex. It is easy to
see that (C,≤, dim) is a two-dimensional abstract cell complex, for each of the
three tilings under consideration.
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Because we study only topological (and not, geometrical) properties of the cell
complex C, we permit the polygons of the triangular and hexagonal tilings to be
no regular polygons (but they have to be congruent and convex). In the rest of
this paper, the term cell complex C = (C,≤, dim) always means an abstract
cell complex, constructed as just explained, from the quadratic or
triangular or hexagonal normal tiling of the plane.

We suppose that a two-dimensional binary digital image is modelled by a cell
complex C, where an object of interest is modelled by a finite subcomplex T ,
such that the image function assigns the value 1 to any cell of T , whereas each
cell of T c has the value 0; T c is named the background. To model the digital
image by a cell complex C, supposing that the 2D image is defined on a discrete
set D ⊆ IR2, there are two principal ideas, as follows:
a) D is identified with the set of 2-cells (or, with the set of 0-cells [20]) of C,
and the other cells of C are generated as an additional structure, which serves
to describe (topological) properties of the set of 2-cells, or equivalently, of D.
Starting with D = ZZ2, Kovalevsky constructed the quadratic cell complex by
identifying each (pixel) p ∈ D with the 2-cell given as the unit square centered
in p, and then, assigning 1- and 0-cells to the object by a maximum rule [7];
under this construction, the object is modelled by a closed subcomplex. This
philosophy is also defended in [3], [5], and [21]. It is possible to identify D = ZZ2

with the set of 2-cells of the triangular and the hexagonal cell complex, too.
b) D is identified with C. Taking into account our supposition that the elements
of C form a decomposition of IR2, the natural quotient map π : IR2 → C, which
assigns to each point x of IR2 the (unique) cell of C which contains x, is an
example of a digitization map. For M ⊆ IR2, π(M) is the set of all cells which,
as subsets of IR2, intersect M , so, this is an analog to the Gauss digitization
defined for a set of pixels, see page 56 of [3]. We applied this digitization scheme
in order to generate the objects for our experiments.

We are conscious that in practice, a digital image is modelled by a finite por-
tion M of the cell complex C. For our implementations of the thinning algorithm
to be correctly working, we suppose that the object of interest T does not touch
the boundary of the image domain M , or, equivalently, T is completely sur-
rounded by cells of M \ T . Our proofs do not need such a supposition, because
they work in the complete cell complex C, and any object T is supposed to be
finite.

3 Cell Complexes and Alexandroff Spaces

It is well-known that any poset (X,≤) generates a topological T0 space, in which
any element is contained in a minimal open neighborhood, given as the inter-
section of all open sets which contain this element. Such spaces were named dis-
crete spaces by Alexandroff [1], but nowadays, they are usually called Alexandroff
spaces ([5], [21]). Alexandroff T0 spaces and posets are equivalent structures: For
a given poset (X,≤), the set st(x) = {y ∈ X : x ≤ y}, named the open star of x,
is the minimal open neighborhood of x, and the family {st(x) : x ∈ X}∪ {∅} is
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a base of an Alexandroff T0 topology τ on X . Conversely, for a given Alexandroff
T0 space (X, τ), the corresponding partial order, called the specialization order
of (X, τ), is defined by x ≤ y ⇔ x ∈ cl(y) ⇔ y ∈ st(x). For this reason, a cell
complex is a topological model for digital images. The specialization order ≤ of
(X, τ) can be used to describe topological properties in (X, τ), for example as
follows (see [1], [21]):

cl(M) = {y ∈ X : y ≤ m for some m ∈M}, cl({x}) = {y ∈ X : y ≤ x};
int(M) = {m ∈M : st(m) ⊆M} = {m ∈M : m ≤ y implies y ∈M};
fr(M) = {y ∈ X : st(y) ∩M 	= ∅ and st(y) ∩M c 	= ∅}
= {y ∈ X : y ≤ m for some m ∈M and y ≤ m for some m ∈M c}.

In this work, we will also use a concept dual to the frontier, called open frontier,
which was introduced in [8] and is important in order to formulate the thinning
algorithm.

Definition 3. Let (X, τ) be an Alexandroff T0 space and M ⊆ X. The open
frontier of M is defined to be the set of(M) = {y ∈ X : cl({y}) ∩M 	= ∅ and
cl({y}) ∩M c 	= ∅}.
Using the properties quoted above, it is clear that of(M) = {y ∈ X : m ≤ y
for some m ∈ M and m ≤ y for some m ∈ M c}. In our two-dimensional cell
complex C, for any M ⊆ X , fr(M) does not contain any 2-cell, and of(M) does
not contain any 0-cell. The open frontier of M is the frontier of M in the dual
topological space which is determined by the reversed specialization order ≥.
Another important property is connectedness, which can be described by means
of a graph theoretical one, derived from the specialization order, as we will see
in what follows.

Definition 4. Let (X,≤) be a poset. Two elements x, y ∈ X are called incident
if x ≤ y or y ≤ x. The set in(x) = {y ∈ X : x is incident with y}, for x ∈ X, is
named incidence set of x.

Note that the incidence relation is reflexive and symmetric. Hence, X with the
incidence relation is an undirected graph, called incidence graph, which provides
a well-known graph theoretical connectedness concept:

Definition 5. Two elements p, q of X are named connected in X if there exist
a finite sequence {p0, p1, ..., pn−1, pn} of elements of X such that p0 = p and
pn = q, and pi is incident with pi+1, 0 ≤ i ≤ n − 1; this sequence is called a
pq-path. A subset M of X is named connected in the incidence graph if any two
p, q ∈M are connected in M .

Now, considering also the topological space (X, τ) corresponding to the poset
(X,≤), recall that X is (topologically) connected if there are no two open disjoint
non-empty proper subsets A and B of X such that A ∪B = X . Then, a subset
M ⊆ X is connected if the topological subspace M is connected. The following
property is known (see [5]).

Lemma 1. Let (X, τ) be an Alexandroff T0 space, ≤ its specialization order, and
M ⊆ X. Then, M is connected if and only if M is connected in the incidence
graph.
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This lemma is true for the Alexandroff T0 space corresponding to any cell com-
plex C, where we have for x ∈ C that in(x) = st(x) ∪ cl({x}); in particular,
in(p) = st(p) for any 0-cell p, and in(q) = cl({q}) for any 2-cell q.

4 Simplicity, Local Simplicity, and Connectivity Number

In analogy to the usual definitions of simple points and end points in adjacency
graphs, we define the following:

Definition 6. Let T be an object in the cell complex C, and p ∈ T .
(i) The cell p is named simple if T has the same number of connected components
as T \ {p}, and, T c has the same number of connected components as T c ∪ {p}.
(ii) The cell p is named final if it is incident with exactly one cell q ∈ T , q 	= p.

Kovalevsky used in [9] another definition of simplicity, which we will name local
simplicity and is defined in the following. We comment that in [10], another
(local) simplicity (named IS-simplicity) was defined, which will be taken into
account in our forthcoming paper, too.

Definition 7. Let T be an object in the cell complex C, and p ∈ (fr(T ) ∪
of(T )) ∩ T . The cell p is named locally simple,
in the case that p ∈ fr(T ), if (st(p) \ {p}) ∩ T and (st(p) \ {p}) ∩ T c both are
non-empty and connected, and,
in the case that p ∈ of(T ), if (cl({p}) \ {p}) ∩ T and (cl({p}) \ {p}) ∩ T c both
are non-empty and connected.

It is easy to see that any simple or final cell of T belongs to (fr(T )∪of(T ))∩T .
In practical thinning algorithms, the simplicity of an element x is checked using
local properties, for example, by template matching, or, by calculating some con-
nectivity number, usually based on adjacency graphs, whose value indicates sim-
plicity, see [14]. The first idea was realized by implementations of Kovalevsky’s
algorithm for the quadratic cell complex in [22], and for the hexagonal cell com-
plex in [19]. The second idea was applied in [13] to implement the same algo-
rithm on a triangular cell complex. In the following, a connectivity number for
cell complexes is introduced, which can be used for deducing a characteriza-
tion of simplicity by the local simplicity. First, observe the following important
properties.

Lemma 2. In any cell complex C, for any cell p ∈ C, the set of cells of (in(p)\
{p}) can be ordered in a cyclic sequence {c0, c1, ..., ck} such that, in this sequence,
(i) any two consecutive cells are incident (including that c0 is incident with ck),
(ii) any cell is incident with exactly two other cells,
(iii) the cells are alternating a-cells and b-cells, where (a, b) = (1, 2) for any
0-cell p, (a, b) = (0, 2) for any 1-cell p, (a, b) = (0, 1) for any 2-cell p.
(iv) For any 1-cell p, the sequence has exactly four cells.



Thinning on Quadratic, Triangular, and Hexagonal Cell Complexes 19

Definition 8. Let T be an object in the cell complex C, and p ∈ T . If {c0, ..., ck}
is a cyclic sequence of the cells of (in(p) \ {p}), which satisfies all properties of
lemma 2, and vi denotes the value of the cell ci in the binary image represented
by C (for i = 0, 1, ..., k =| in(p) \ {p} |), then define the connectivity number
of p to be the number

cn(p) =
|in(p)|−2∑

i=0

| vi − v(i+1) |,

where the sum in the index set is calculated modulo (| in(p) | −1).

The connectivity number is the number of changes from value 1 to value 0 or
vice versa, in the set (in(p) \ {p}), and its definition depends on lemma 2. It is
easy to see that cn(p) is independent of the selection of the cyclic sequence, and
the following properties are proved in [13]:

Lemma 3. Let T be an object in the cell complex C, and p ∈ T . Then,
(i) cn(p) is strictly positive if and only if p ∈ fr(T ) ∪ of(T ).
(ii) For p ∈ fr(T ) ∪ of(T ), the number of connected components of (in(p) \
{p}) ∩ T equals the number of connected components of (in(p) \ {p}) ∩ T c, and
both are equal to 1

2cn(p).

The connectivity number will be used to characterize simplicity, based on the
following property:

Theorem 1. Let T be an object in the cell complex C, and p ∈ (fr(T )∪of(T ))∩
T . If p is locally simple then p is simple.

Proof. Consider here only the case that p ∈ fr(T ). Assuming that p is not
simple, we prove that (st(p) \ {p}) ∩ T or (st(p) \ {p}) ∩ T c is not connected:
Based on definition 7, we have to study the following two suppositions:
(1) T \ {p} has strictly more connected components than T .
(2) T c ∪ {p} has strictly less connected components than T c.
Consider (1) (the proof under (2) is similar). Since p ∈ fr(T ), dim(p) ∈ {0, 1}.
(1a) If p is a 0-cell, the supposition (1) and lemma 1 imply that there exist
q1, q2 ∈ T \ {p} such that there is no q1q2-path in T \ {p}, but there exists
a q1q2-path w in T . Provided that w is not a path in T \ {p}, it follows that
w = {q1 = γ1, ...γi−1, p, γi+1, ..., γn = q2}, where 2 ≤ i ≤ n−1 and γi−1, γi+1 are
distinct. Supposing that (st(p)\{p})∩T is connected, there is a γi−1, γi+1-path
z in (st(p) \ {p}) ∩ T , implying that {q1 = γ1, ...γi−1} ∪ z ∪ {γi+1, ..., γn = q2}
is a q1q2-path in T \ {p}, which contradicts our supposition. In consequence,
(st(p) \ {p}) ∩ T is not connected.
(1b) If p is a 1-cell, let {p1, p2} = cl({p})\{p}, and {c1, c2} = st(p)\{p}. Because
p ∈ fr(T ) ∩ T , (st(p) \ {p}) ∩ T c 	= ∅. Furthermore, by studying the incidence
set of p, it is not difficult to prove that (st(p) \ {p}) ∩ T = ∅, which implies by
lemma 2 that (st(p) \ {p}) ∩ T c = {c1, c2} which is not connected. ��
Now we apply theorem 1 in order to prove the following characterization of
simplicity by means of the connectivity number.
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Proposition 1. Let T be an object in the cell complex C, and p ∈ (fr(T ) ∪
of(T )) ∩ T . Then p is simple if and only if cn(p) = 2 .

Proof. Consider here only the case p ∈ fr(T ). Suppose first that cn(p) = 2. By
theorem 1, for showing that p is simple, it is sufficient to prove that (st(p)\{p})∩
T and (st(p)\{p})∩T c both are non-empty and connected. It is easily seen that
both sets are non-empty. Now, if p is a 0-cell then in(p) \ {p} = st(p) \ {p}, and
lemma 3 implies that each of the sets (st(p)\{p})∩T and (st(p)\{p})∩T c consists
of exactly one connected component. If p is a 1-cell then (st(p) \ {p}) ∩ T = ∅,
or (st(p) \ {p}) ∩ T has exactly one element. In both situations, p is simple.

Suppose now that cn(p) 	= 2, and let us prove that then p is not simple. By
lemma 3 and using p ∈ fr(T ), we can assume that cn(p) ≥ 4. Hence each of
the two sets (in(p) \ {p}) ∩ T and (in(p) \ {p}) ∩ T c has at least two connected
components. Choose a cyclic sequence {c0, c1, ..., ck} of (in(p) \ {p}) such that
the cells cα, cβ belong to distinct components of (in(p) \ {p}) ∩ T c, and cγ , cδ

belong to distinct components of (in(p) \ {p}) ∩ T , and α < γ < β < δ. If
cα, cβ belong to distinct components of T c then p is not simple because cα, cβ

belong to the same component of T c ∪ {p}. Suppose now that cα, cβ belong to
the same component of T c. If cγ , cδ belong to distinct components of T \{p}
then again, p is not simple. But if cγ , cδ are cells of the same component of T
\{p} then, by the alternating position of cα, cβ, cγ , cδ, the cells cα, cβ belong to
distinct components of T c, which contradicts our supposition. In consequence,
cn(p) 	= 2 implies that p is not simple. ��
Proposition 1 and lemma 3 imply the following equivalence.

Corollary 1. Let T be an object in the cell complex C, and let p ∈ (fr(T ) ∪
of(T )) ∩ T be a 0-cell or a 2-cell or a non-final 1-cell. Then p is simple if and
only if p is locally simple .

5 Kovalevsky’s Thinning Algorithm

Recall that any object T is a finite subcomplex of a cell complex C, each cell
of T has value 1, and each cell of T c has value 0. To delete a cell of T means
that its value is changed from 1 to 0, so, after its deletion, the cell belongs to
T c. We quote from [9] and [10] the following algorithm which in our paper will
be named Kovalevsky’s algoritm:

Definition 9. Kovalevsky’s algorithm: Let T be an object in a cell complex C.
Each iteration consists in the following two steps:
1) Detect and delete all cells from fr(T ) ∩ T , which are simple and non-final.
Count the number of cells which are deleted in this step, and denote it by a. Let
T be the remaining object.
2) Detect and delete all cells from of(T ) ∩ T , which are simple and non-final.
Count the number of cells which are eliminated in this step, and denote it by b.
Let T be the remaining object.



Thinning on Quadratic, Triangular, and Hexagonal Cell Complexes 21

In the case that a + b 	= 0, perform the next iteration, starting with step 1; in
the case a + b = 0, the algorithm is finished, and the actual remaining object
T is considered the result of the algorithm, and will be called the Kovalevsky
skeleton.

Kovalevsky considered any subcomplex of an arbitrary cell complex as an input
object. Nevertheless, the unique example of [9] and [10] involved a closed object.
By our theorem 1, the global property of simplicity is guaranteed by the local
simplicity. In [9], Kovalevsky defines a cell to be simple if it is locally simple due
to our definition. Hence, his proposal of algorithm previews the detection of lo-
cally simple cells. However, our characterization of simplicity by the connectivity
number is another useful base for the implementation of the algorithm.

The definition of the algorithm does not specify whether a sequential or a
parallel implementation is described. In a sequential implementation, step 1 of
the algorithm (and, similarly, step 2) works in the following manner: First, de-
termine fr(T ) ∩ T = {m1, m2, ..., mk}. Then, for i = 1, 2, ..., k, if mi is detected
to be simple and non-final in T , then delete mi immediately from T , that is,
T := T \ {mi}, before proceeding to check the next element mi+1. In conse-
quence, the deletion of some mi from T can have influence on whether mi+1

is simple and non-final in T or not. It is evident from the definition of sim-
ple elements, that the sequential deletion of simple elements always preserves
topology. Hence, in particular, the application of a sequential implementation of
Kovalevsky’s algorithm, applied to a non-empty connected object, produces a
non-empty connected Kovalevsky skeleton.

The situation is distinct for the parallel implementation of Kovalevsky’s
algorithm. In this case, step 1 (and, similarly, step 2) works as follows: First,
determine fr(T )∩T = {m1, m2, ..., mk}. Then, for i = 1, 2, ..., k, if mi is detected
to be simple and non-final in T , then it is marked but not (yet) deleted. When
all cells of {m1, m2, ..., mk} have been checked, then all marked cells are deleted,
that is, T := T \{m ∈ fr(T )∩T : m simple and non-final in T }. In consequence,
the fact that some cell mi is marked as to be deleted later, does not have any
influence on whether mi+1 is simple in T or not. In other words, the simplicity
of a cell is checked always with respect to the object which equals the actual
remaining whole object at the beginning of the step.

It is well-known that the resulting skeletons obtained from sequential and from
parallel implementations of the same thinning algorithm can be quite distinct,
and, that it is far from trivial whether a parallel implementation of a thinning
algorithm, preserves topology. We will show in the next section that the parallel
implementation of Kovalevsky’s algorithm preserves topology.

6 Parallel Thinning Due to Kovalevsky’s Algorithm

Recall from definition 9 that each iteration of Kovalevsky’s algorithm consists
in two steps. The following theorem will imply that Kovalevsky’s algorithm can
be parallelized.
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Theorem 2. Let T be an non-empty object in a cell complex C. Denote by Tk

the remaining object after having applied k steps of the parallel implementation
of Kovalevsky’s algorithm to the input object T , for k ≥ 0, where T0 = T . Then,
for all k ≥ 1, the number of connected components of Tk is equal to the number
of components of T , and also, the number of connected components of T c

k equals
the number of components of T c.

Proof. We give here only the main idea of the proof by induction on k. Let us call
two objects equivalent if they have the same number of connected components,
and if the numbers of connected components of their complements also coincide.
In the induction base it is proved that T1 is equivalent to T , and then, under
the induction hypothesis that Tk is equivalent to T , it is proved that Tk+1 is
equivalent to T . Both the induction base and the induction step proof, are based
on the following reasoning:

Let R be an object which is is equivalent to T , and whose simple non-final
cells r1, ..., rn are cells of its frontier [or, analogously, of its open frontier], which
are arbitrarily ordered and have been detected in a parallel manner. The latter
means that each of these cells was detected to be simple and non-final, as a cell
of the whole object R. It is proved using (n− 1) steps that R1 = R \ {r1, ..., rn}
is equivalent to T . The l-th step consists in proving that rl+1, ..., rn are simple
in R \ {r1, ..., rl}. That R \ {r1, ..., rl} is equivalent to T , is obtained in the
(l − 1)-th step, for l > 1. In the case l = 1, we apply that R is equivalent to
T . In the (n − 1)-th step, it is proved that the cell rn is simple in the object
R\{r1, ..., rn−1}, so, it is proved that R1 is equivalent to T . Observe that R1 is the
result of having applied to the object R one step of the parallel implementation of
Kovalevsky’s algorithm, which corresponds to the treating of cells of the frontier
[or, analogously, of the open frontier]. ��

Corollary 2. The parallel implementation of Kovalevsky’s algorithm preserves
topology. In particular, the Kovalevsky skeleton of any non-empty object, is non-
empty; and, the Kovalevsky skeleton of any connected object, is connected.

7 Examples of Kovalevsky Skeletons

In this section we show some examples of skeletons, obtained by the parallel
implementation of Kovalevsky’s algorithm.

Figure 1 shows the skeletons of a capital “T”, in three distinct orientations.
Observe the robustness of the skeleton with respect to rotations, on the hexago-
nal cell complex, which, due to our experiments, has “better” geometrical prop-
erties than the other two cell complexes; this topic will be treated in another
paper.

Figures 2 and 3 present objects and their skeletons on the quadratic cell
complex.
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Fig. 1. On the hexagonal complex, the skeletons of a letter T, in three orientations

Fig. 2. On the quadratic cell complex, left: a closed object to be thinned, middle: a
remaining object during the thinning process, right: the resulting skeleton

Fig. 3. On the quadratic cell complex, an object (left), which is neither closed nor
open, and its corresponding skeleton (right)

The object in figure 3 present the interesting property that the skeleton can
contain cells p, q, r, p a 0-cell, q a 1-cell, and r a 2-cell, such that p ≤ q ≤ r. Hence
the skeleton is a subcomplex which has a topological dimension, as defined in
[21] for Alexandroff spaces, equal to two. This contradicts the intuitive idea, that
a skeleton should be “thin” or “curve-like”, but similar properties were observed
for skeletons on adjacency graphs [12]. Figure 4 presents another example for
this fact.
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Fig. 4. On the triangular cell complex, left: the original object, middle: its skeleton,
right: a detail of the skeleton, where a chain of the form p < q < r in the poset can be
observed

8 Concluding Remarks

In this paper, we give a theoretical foundation of Kovalevsky’s thinning algo-
rithm, if it is applied to 2D binary images modelled by a quadratic, triangular,
or hexagonal cell complex. We proved that local simplicity is sufficient for sim-
plicity, and we characterized simplicity by a connectivity number which is locally
computed. Moreover, we show that the parallel realization of the algorithm pre-
serves topology.

It is clear from Kovalevsky’s algorithm, that the resulting Kovalevsky skeleton
is irreducible in the sense, that it does not contain any simple non-final cell,
in analogy to the definition of irreducibility of subgraphs of certain adjacency
graphs used in [12]. The Kovalevsky skeleton is unique if obtained from the
parallel implementation; but for sequential implementations, there are various
ways of tracing the (open) frontier, which can result in different skeletons. The
example presented in figure 4 shows that the Kovalevsky skeleton can contain
cells p, q, r, pairwise distinct, such that p ≤ q ≤ r. In this case, the topological
dimension, as defined in [21] for Alexandroff spaces, of the skeleton is equal to
two.

Acknowledgements. The authors thank the referees for their useful comments.
Figure 1 is from [19]; the authors thank Alfredo Trejo for having implemented
Kovalevsky’s algorithm on the hexagonal cell complex.
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Abstract. Estimating the geometry of a digital shape or contour is an
important task in many image analysis applications. This paper pro-
poses an in-depth experimental comparison between various continuous
tangent estimators and a representative digital tangent estimator. The
continuous estimators belong to two standard approximation methods:
least square fitting and gaussian smoothing. The digital estimator is
based on the extraction of maximal digital straight segments [9,10]. The
comprehensive comparison takes into account objective criteria such as
isotropy and multigrid convergence. Experiments underline that the pro-
posed digital estimator addresses many of the proposed objective criteria
and that it is in general as good - if not better - than continuous methods.

1 Introduction

The proper detection of significant features along digital curves often relies on
an accurate estimation of the geometry of the underlying curve that has been
digitized. Local geometric quantities such as the curvature at given points can
lead to corner detection [17], more generally curvature and tangent estimation
lead to the detection of dominant points on digital curves [14]. Correct tangent
estimation allows length computation by simple integration.

Estimating local geometric quantities on digitized shapes is a difficult task in
itself for at least four major reasons:

(1) Given a digitized shape there exists infinitely many continuous Euclidean
shapes that have the same digitization.

(2) Given a digital point and a point on the continuous curve, determining the
required size of the computation window to achieve a good estimation is
tricky.
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(3) The digitized curve can be noisy or damaged, worsening the preceding
problems.

(4) The time spent on computations may be limited.

The first problem implies that, given a digital shape, additional hypotheses
are required to define its reference shape, such as smoothness, compactness, con-
vexity, minimal perimeter or maximal area. For instance, given a digital disk, a
reasonnable hypothesis is that the underlying shape is an Euclidean disk, and not
some kind of gears with small cogs. The second problem involves the adaptabil-
ity of computation windows to the local geometry of the shape, e.g. curves with
huge curvature variations require different sizes for the computation windows.
Sizes of computation windows have a huge impact on the multi-grid convergence
(see [4]). The third problem is a common problem which is efficiently addressed
in the continuous world, but lacks proper definitions in the digital world. This
entails that continuous methods are generally preferred for the extraction of ge-
ometric quantities. The fourth problem arises when the computation windows
are too large, while narrowing their sizes has a direct impact on the precision of
the method. These issues are related to many interesting topics on digital curves
such as multi-grid convergence [3,8], digitization problems and topology issues
[12], combinatorial properties of digitized shapes [1] and new models for digital
straight segments taking into account some distortions [6].

As mentioned earlier usual geometric estimators are based on approximation
techniques in the continuous Euclidean space. They forget the specificities of
subsets of the digital plane. By this way, they address problem (3) considering
that it is the main issue. The noise is then handled by tuning some external
parameters. In fact the external parameters often reduce to the choice of the
size of the computation window, handling problems (2), (3) and (4) at the same
time with a trade-off. The continuous methods can be of various type with
different aims with respect to the digital curve: interpolation, reconstruction
or fit. The choice of the underlying curve in problem (1) is then often made
explicitly with the method itself, e.g. using cubic-splines to interpolate points
along a digital curve lead to degree three polynomials as the underlying curve.
The numerical methods required to extract the chosen solution can be costly
and may even require parameters themselves, this is particularly true when the
chosen underlying curve is the solution of a non trivial optimisation problem. As
a result (1) and (2) have a direct impact on (4).

On the contrary, standard digital estimators based on digital straight segment
recognition estimate local geometric quantities like tangent or curvature with an
adaptive computation window and, at the same time, they do not require any
external parameters [7,9,19]. Recently, an evaluation of digital tangent estima-
tors was performed in [9] and the λ-MST was shown to outperform the others
on many criteria like precision, maximal error, isotropy, convergence, convexity.
The tangent orientation is determined using digital straight segment recogni-
tion, which entails a computation window adapted to the local curve geometry
(addressing problem (2)) and without assumptions on the underlying curve (ad-
dressing problem (1)). The average size of the computation window is known and
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is roughly in Θ
(
h−1/3

)
where h is the grid step (see [4] for technical proofs).

As a result, the asymptotic convergence — or multigrid convergence — of the
λ-MST estimator is proved for smooth and convex curves [10]. This estimator
is also the best among digital ones at rough scale [9,10]. Its computation on the
whole digital curve, i.e. the computation of the tangent orientation field, may be
done in time linear with the number of digital points (optimal time, addressing
(4)). This estimator is yet to be shown as good as standard continuous methods.

This is precisely the goal of this paper which is achieved by experimental com-
parison between the λ-MST estimator and two representative classes of continu-
ous estimators. We naturally examine classical criteria like the average absolute
error. Furthermore, we propose to use the product precision by computational
cost to compare them as objectively as possible. Besides, our aim is not only to
compare these estimators but to see if they can benefit from one another. This
is the case here where we show how an optimal computation window (problem
(2)) can be chosen for the Gaussian derivative technique. The obtained improve-
ments are illustrated experimentally. These experiments indicate that even with
the best possible window, the continuous estimators are outperformed by the λ-
MST according to the product precision by cost. We stress that we treat only the
ideal case where digital contours are perfect digitizations of continuous shapes,
without any perturbation or noise. Indeed, a first evaluation must be carried out
before in the ideal case, for instance to identify the best precision an estima-
tor may achieve. Secondly, the λ-MST estimator is easily extensible to maximal
blurred digital straight segments [6], which can accommodate local perturbations
in the digital contour. An experimental evaluation of continuous versus discrete
estimators in the presence of noise could then be carried out similarly, and would
be the object of a future work.

The paper is organized as follow. First we describe continuous tangent estima-
tor methods, more specifically the ones based on least square fitting with poly-
nomials and the ones using convolution with a gaussian derivative. Their main
drawbacks are also recalled. In a second time we briefly recall the definition of the
λ-MST estimator and its main properties (Section 3). In Section 4, an experimen-
tal evaluation between the different estimators is presented, following some of the
objective criteria proposed in [9,10]. We also propose several improvements of the
two continuous methods, which are then underlined experimentally. The criterion
precision times computational cost shows that, even with these improvements, the
digital estimator competes with the best possible continuous methods. Our con-
clusion is thus that digital straight segments are a powerful tool to analyse the
geometry of digital curves.

2 Continuous Tangent Estimators

This section presents two continuous classes of methods that are used to extract
geometric information from curves. Both methods need external parameters to
achieve the best possible accuracy. In the remaining of the paper the considered
digital curves are digital 4-curves, that is a 4-connected closed sequence of points
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in Z
2 such that each of them has exactly two 4-neighbors: a predecessor and a

successor (given an orientation). Such curves arise naturally from the cellular
decomposition of the Gauss digitization of simple Euclidean objects, provided
they are well-composed [11]. The obtained digital curve is denoted C and its
points are ordered increasingly with a counterclockwise order, Ci denotes the
i-th point of the digital curve and Ci,j is the digital path from the i-th point to
the j-th point.

2.1 Least Square Methods Using Polynomials

The aim of these methods is to find a polynomial of finite degree which minimizes
a positional squared error from a set of (possibly noisy) samples. More precisely,
let us denote by (si = (xi, yi))1≤i≤M a set of M samples obtained from a pla-
nar curve parameterized as y = f(x). We thus seek to minimize the functional

E(a0, . . . , aN ) =
∑M

i=1

(
yi −

∑j=N
j=0 ajx

j
i

)2

.
In the general case, the problem can be reduced to a matrix inversion problem.

At least one solution exists and can be efficiently computed using QR factori-
sation [16]. For small degree polynomials, direct computation is possible as it
involves square matrices of order two and three. It is not compulsory that the
polynomial be the supposed underlying curve itself. It can also be its local Taylor
expansion as explained in [13] for implicit parabola fitting, an approach which
is generalized by the n-jets of [2].

Once the optimal polynomial for E is determined, the coefficient associated to
its X monomial may be used to estimate the tangent orientation. We naturally
focus on low order polynomials. That is the linear regression (LR, Eq. (1)), im-
plicit parabola fitting (IPF, Eq. (2)), and explicit parabola fitting (EPF, Eq. (3)).
When used for approaching the tangent orientation at the point of interest C0,
considered as the origin, with a computation window ranging from C−q to Cq,
those three methods give very similar results (see Figure 1).

ELR(a, b) = E(a, b, 0, . . .) , (1)
EIPF (a, b) = E(0, a, b, 0, . . .) , (2)

EEPF (a, b, c) = E(a, b, c, 0, . . .) . (3)

A refinement of this method is the weighted least square fitting, where each
sample has a variable importance in the fitting process: the heavier the weight,
the more important the fit. However, it is not easy to find meaningful weights
within our context. Another refinement is to use independent coordinates, that
is a fit on each coordinates with respect to a given parameterization of the
curve. Usually centered windows are considered: C0 is the point of interest,
M = 2q + 1 is the size of the computation window going from C−q to Cq. When
using independent coordinates, the arc-length from C0 to Ci, is computed as∑i−1

k=O d1(Ck, Ck+1) if i > 0 and −∑i−1
k=O d1(Ck, Ck+1) otherwise.1

1 d1 denotes the distance obtained from the || · ||1 norm.
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Fig. 1. We represent the tangent orientation estimated with IPF,EPF and LR methods.
The test shape is a circle of radius 1. Computation window equals 2q + 1. (Left) Grid
step equals 0.01, x-axis represents the polar angle, the y-axis represents the orientation
of the tangent. (Right) The plot is in log-space and represent the average absolute error
between true tangent and estimated tangent as a function of the grid step. For each
grid step 50 experiences are made with a random shift on the center of the shape.

2.2 Reconstruction Using Gaussian Smoothing

The use of gaussian filters is a common technique for improving the quality of
noisy images. This filter can also be used when trying to analyze a digital curve,
and has been used in the pattern recognition community for almost 30 years. It
is essentially a weighted averaging over a finite window. The obtained smoothed
continuous curve is considered to be a good approximation of the underlying
curve. Its derivatives are easily computed yielding geometric quantities of the
first and second order. This reconstruction has one major drawback, which is
the choice of the parameter σ. This tuning parameter is often chosen for the
whole curve, but it is not satisfying if the curve has huge curvature variations,
entailing then over-smoothing for some region and under-smoothing for others.
As a result techniques using scale-space were proposed [15,20] to achieve a better
localization of the dominant points across the different σ values. From a discrete
point of view we will consider that the estimated derivative at the digital point
C0, say Ĉ′

0, is obtained as : Ĉ′
0 =

∑q
i=−q G′

σq
(−i)Ci, with σq = 2q+1

3 and where

G′
σ(t) is the first derivative of the Gaussian function Gσ(t) = 1

σ
√

2π
exp

(
−t2

2σ2

)
.

2.3 Common Drawbacks

In the context of digital geometry, the methods presented above share similar
drawbacks, which we try to analyze here. First of all, if we consider the digitiza-
tion of convex shapes, we see that the analysis of its border with the preceding
techniques may lead to false concavity/convexity detection, even in the simplest
case of the circle as shown on Figure 2. This is particularly true when the size
of the computation window is not large enough.

The false convexity/concavity detection can be alleged to a wrong size of the
computation window. Experimentally on digitized circles it seems that if the size
of the computation window exceeds some value being a functional of the radius
and the grid step, there is no false convexity/concavity points. More precisely,
this phenomenon is related to the maximal curvature of the shape under study.
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Fig. 2. Test shape is a circle of radius 1, digitized with a grid step equal to 0.01. Tangent
orientation is plotted as a function of the polar angle. The x-axis represents the polar
angle, the y-axis represents the orientation of the tangent. The size of the computation
window equals 2q + 1. (Left) Tangent orientation obtained using convolutions by the
gaussian derivative σq. (Right) Tangent orientation obtained using implicit parabola
fitting with independent coordinates (ICIPF).

Another fundamental problem related to fixed size computation windows is
that one parameter, even if suited for some regions, cannot adapt to the geometry
of a digitized shape with huge curvature variations. This statement is particularly
underlined on Figure 3. Moreover, a fixed parameter prevents the multigrid
convergence of continuous estimators, since it limits the number of data taken
into account in the fitting or smoothing process, thus limiting the number of
possible local geometries. This is illustrated on Figure 4, where the size on the
computation window has a direct impact on the average error.

Last but not least, the computed curvilinear abscissa obtained from the sum-
mation of the elementary steps on digital curve is a poor estimation (see [18] for
a proof of non convergence for length estimators using fixed-size windows on eu-
clidean segments). Thus the problems of parametrization induce displacements
and errors in the continuous proposed methods. A way to solve this problem
would be to use an estimation of the elementary steps ds along the curve using
the tangent orientation computed with a convergent estimator.

3 Discrete Tangent Estimators

This section recalls the definitions of elementary objects regarding digital straight
segments. We then briefly present the λ-MST estimator and its properties.

3.1 Properties and Definitions

Digital straight lines can be simply seen as the digitization of euclidean straight
lines. More formally, a standard line of characteristics (a, b, μ) ∈ Z

3 is the sub-
set of Z

2
{
(x, y) ∈ Z

2 | μ ≤ ax− by < μ + |a|+ |b|}. They form 4-connected se-
quences of digital points. We say that a set of successive points Ci,j of the
digital curve C is a digital straight segment (DSS) iff there exists a standard line
(a, b, μ) containing them. The predicate “Ci,j is a DSS” is denoted by S(i, j).
When S(i, j), the characteristics associated with the digital straight segment
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points, we also superposed the theoretical curvature with a dash-dotted plot, but in an
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plot). We see that the three methods are less precise on the part of the border of the
shape which has the fastest curvature variation because of the size of the computation
window which is not adapted to the local geometry of the shape. On the contrary, the
λ-MST which has an adaptive window size behave much better.
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Fig. 4. Experimental multigrid convergence analysis drawn in log-space: x-axis is the
inverse of the grid step, y-axis is the average of the absolute error between theoretical
tangent and estimated tangent, the shape of reference is a circle of radius one. At each
grid step 50 experiences are made and the center is shifted randomly. (Left) Gaussian
derivative (GD) with various window size. (Right) Implicit parabola fitting (IPF). In
both cases, fixed parameters cannot achieve convergence.
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(extracted with the DR95 algorithm [5]) are the characteristics (a, b, μ), which
minimize |a|+ |b|.

The slope a/b of a DSS provides a coarse estimation of the slope of the un-
derlying tangent. Upon the many existing classes of DSS, we choose to focus on
a particular class, the one that contains all the other DSS:

Definition 1. We say that a portion Ci,j of C is a maximal digital straight
segment (MS) iff S(i, j) ∧ ¬S(i− 1, j) ∧ ¬S(i, j + 1).

Maximal segments can be numbered with increasing indices on the digital curve,
M i = Cbi,fi denoting the i-th maximal segment. With an incremental version
of the DR95 algorithm (see [7,9,10]), the set of all the maximal segments on a
finite digital curve can be extracted in linear time with respect to the number
of points of the curve. As maximal segments generally overlap, we introduce the
set of all the maximal segments traversing a point.

Definition 2. The pencil of maximal segments of Ck, denoted P(k) is the set
of MS containing Ck.

Since every DSS can be extended to form a MS, the pencil of any point is never
empty. We also define the eccentricity of a point Ck with respect to a maximal
segment M i in P(k) as: ei(k) = ‖Ck−Cbi

‖1

Li
= k−bi

Li
with Li = ‖Cfi − Cbi‖1.

This value indicates if a digital point is centered within a maximal segment: it is
perfectly centered if the value equals 1/2, limit values are 0 and 1 for extremal
points of a maximal segment.

3.2 The λ-MST Tangent Estimator

The λ-MST tangent estimator at one point is designed to take into account the
various orientations of the MS in the pencil weighted by a functional of their
respective eccentricity with respect to the point of interest:

Definition 3. The λ-maximal segment tangent direction at point Ck (λ-MST)

is defined as θ̂(k) =
∑

i∈P(k) λ(ei(k))θi
∑

i∈P(k) λ(ei(k)) , where θi is the angle of the slope of the
i-th MS with the x-abscissa.

Considering the properties of the eccentricity and the non-emptyness of pen-
cils, this value is always defined and may be computed locally. For particular λ
functions the λ-MST estimator satisfies the convexity/concavity property2 (see
Theorem 8 of [10]).

This implies that the border of digitally convex shapes analysed with the λ-
MST estimator under the conditions of the preceding theorem does not contain
any false concavity. In practice the triangle function is used as the λ function: it
matches the preceding conditions and brings good results.3 Other nice properties
are a good isotropic behaviour, multigrid convergence and computation of the
tangent field in time linear with respect to the number of curve points (see [9,10]
and Figure 5).
2 Estimated tangent directions are monotone for digitization of convex shapes.
3 The triangle function is defined as x → x if x ∈ [0, 1

2
] and x → 1 − x if x ∈ [ 1

2
, 1].
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Fig. 5. The test shape is a circle of radius 1, the x-axis represents the inverse of the
grid step. For each grid step, fifty experiences were launched with uniform random shift
of the center of the shape. Plots are drawn in log-space. (Left) Average absolute error
between true tangent and estimated tangent with the λ-MST, the law seems to be in
O(h−2/3). (Right) Time spent on computing the tangent orientation field with the λ-
MST, the law follows O(1/h), the same magnitude as the number of points constituting
the border of the digitized shape.

4 Experimental Evaluation

The multigrid convergence of the λ-MST estimator is shown on Figure 5 and its
good behaviour with respect to huge curvature variations is exemplified on Fig-
ure 3. On the contrary the non multigrid convergence of the proposed estimators
using fixed size computation window is shown on Figure 4 with the measure of
the average absolute error as a function of the grid step. Though the precision
of an estimator is important the time spent on the computation has also to be
taken into account, a criterion measuring these two parameters at the same time
is proposed in the next subsection, yielding the same conclusion.

4.1 A New Criterion Balancing Precision and Computation Time

This subsection introduces a new criterion to compare local tangent estimators,
called AAEBT: we measure the product of the average absolute error of tangent
direction estimation by the computation time for the whole curve. The lower the
quantity as the grid step decreases, the better. As problem (2) penalizes estima-
tors using fixed size windows on curves with huge curvature variations we ran the
experiments on digitizations of a disk. The experiments on Figure 6 clearly show
that criterion AAEBT for the GD estimator of fixed size window becomes linear
with the inverse of the grid step after some rank. For each window size, there
is thus a bound to the maximum reachable precision (Figure 4 also illustrates
this matter). However, judging from the experiments, the λ-MST estimator has
a much better AAEBT which seems to be in O((1/h)1/3). This behaviour is
consistent with the average absolute error of the tangent orientation in O(h2/3)
and the computational cost in O(1/h) (see Figure 5).

4.2 Improving Continuous Estimators Using Fixed-Size Windows

Figure 4 clearly suggests that there is a somewhat best window size to pick for
each grid step. Judging from experiments on the circle for the GD estimator,
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Fig. 6. Test shape is a circle of radius 1, the x-axis is the inverse of the grid step.
We represent the time spent on computing the tangent field multiplied by the av-
erage absolute error between true tangent orientation and estimation with particu-
lar estimators. Plots are drawn in the log-space. (Left) Comparison between gaussian
derivative with various window sizes and the λ-MST estimator. For the GD estimator,
curves tend to be linear once the maximum precision is reached. (Right) Comparison
between implicit parabola fitting with independent coordinates with various window
sizes and the λ-MST estimator. For the λ-MST estimator, the law seem to be in
O((1/h)1/3).
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the best possible accuracy is in O(h5/6) provided the size of the computation
window follow O((1/h)1/2) as shown on Figure 7. The parameter σ of GD is set
to one third of the computation window size.

Let us use an adaptive window defined as the maximum distance between the
point of interest and the ends of its pencil. The defined size of the computation
window increase as a functional of the inverse of the grid step, and even though
on average it only grows in O((1/h)1/3) this size brings multigrid convergence
for both fits and gaussian derivative, as exemplified on Figure 8 (H-GD and H-
ICIPF). The size can also be set globally using the average size of the maximal
segments, again multigrid convergence is observed, see Figure 8 (HG-GD and
HG-ICIPF).
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Fig. 8. Average absolute error between true tangent and estimated tangent. The plot-
ted estimators use computation window whose size is determined with maximal seg-
ments. Hybrid estimators (H-GD and H-ICIPF) use the maximal distance between the
point of interest and the ends of its pencil as q parameter. Hybrid global estimators
(HG-GD and HG-ICIPF) use the average size in terms of number of points of the max-
imal segments as q parameter. (Left) The test shape is a circle of radius one. (Right)
Test shape is a flower with two extremities, maximal radius 1.4 and minimal radius
0.6.

5 Conclusion

The presented experiments have shown how digital tangent estimators compare
to classic continuous methods in the ideal digitization case: they are as precise
and they are faster. This is clearly underlined when using the criterion precision
multiplied by cost. Furthermore, we have shown how to introduce the adaptive
window of digital estimators into continuous estimators to get an optimal window
size. Future works will consider noise in the evaluation. Although defining noise
in the discrete world is tricky, we plan to use maximal blurred digital straight
segments to take into account distortion in the digital curve.
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Abstract. In this paper we want to introduce an algorithm for the cre-
ation of polyhedral approximations for objects represented as strongly
connected sets of voxels in three-dimensional binary images. The algo-
rithm generates the convex hull of a given object and modifies the hull
afterwards by recursive repetitions of generating convex hulls of subsets
of the given voxel set or subsets of the background voxels. The result of
this method is a polyhedron which separates object voxels from back-
ground voxels. The objects processed by this algorithm and also the
background voxel components inside the convex hull of the objects are
restricted to have genus 0.

1 Introduction

An often arising problem in the field of three-dimensional image analysis is the
efficient encoding of the surface of a digital object which is given as a set of voxels.
The most popular approach is that of the triangulation, not only because of the
simplicity of triangles but also because of the existing hardware support for tasks
in the field of computer graphics.

A widely used approach to triangulate voxel objects is the Marching Cubes
Algorithm by Lorensen and Cline [9]. It has a very low time complexity, i.e.
it is linear in the number of voxels, which makes this algorithm applicable in
practical tasks. But it has also two important drawbacks. First, the number of
generated triangles is in most cases greater than the number of surface elements
(faces) of the original voxel image and second, the orientation of the triangles is
limited to a few directions. This is not desirable when an approximation of the
original object (before digitization) is needed, which has a smooth surface with
a constant curvature, for example.

Other triangulation methods use a divide-and-conquer approach. The algo-
rithm described in [3] is applicable not only in 2-dimensional spaces to pro-
duce Delaunay triangulations, but also in higher dimensions, i.e. also in the
3-dimensional case. The algorithm separates the input data into two subsets
and constructs the triangulation of the subsets recursively.
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Another possibility consists in creating the Voronoi diagram [11] of a set of
points using the duality between Delaunay triangulations and Voronoi diagrams.
Efficient algorithms for constructing Voronoi diagrams in 2D are well known [10].
The concept can be easily adopted to 3D.

Sometimes there exists the necessity to generate a more economical surface
than a triangulation. Especially when triangulations would have lots of coplanar
triangles, a polyhedral surface (a surface containing faces with more than three
edges) would be much more efficient. The problem of approximating polyhedral
surfaces is also well studied in the field of computational geometry [1,2,4].

In [8] we have already shown that for a convex voxel set (see Definition DCS
below) the convex hull is such a polyhedral surface. In this paper we present an
improvement of this algorithm to approximate non-convex objects, too.

The formal task to be solved is the following: Given a set V of voxels we want
to create a closed polyhedral surface H containing V with the minimum surface
area. Since there can be more than one polyhedron with the minimum surface
area, we search the one with the minimum number of faces.1 The polyhedral
surface H shall separate object voxels (interior) from background voxels (exte-
rior) in such a way that no object voxel lies outside H and no background voxel
lies inside H . Voxels lying on H , especially the vertices of the polyhedron, have
to be marked as being object voxels or background voxels. For the first criterion
(minimum surface area) we will only present an approximation here. The second
criterion (separation) is stated to realize the possibility to exactly restore the
original voxel set V from the polyhedron H . An efficient data structure to store
the polyhedral surface is the cell list [5].

The vertices of the polyhedron H are the voxels. There also exists the possi-
bility to create a polyhedral surface separating the 0-cells and with the 0-cells
as its vertices. These two approaches are dual.

In the next Section we present the basic definitions used in this paper. In
Section 3 we discuss the algorithm for the construction of the polyhedron. In
Section 4 we show some example images and experimental results. The paper is
closed with a conclusion in Section 5 and a bibliography.

2 Basic Definitions

The algorithm presented here is based on the theory of abstract cell complexes
(AC complexes) [5]. Most of the basic notions of this theory relevant to the topic
of polyhedral surfaces are gathered in the Appendix to [8].

Let V be a given set of voxels in a Cartesian three-dimensional space. The
voxels of V are specified by their coordinates. Our aim is to construct the convex
hull K of V and a modification H of K which represents the polyhedral surface
of V . We consider the convex hull and the modified hull as abstract polyhedra
according to the following definition [8]:

1 Example: The faces of a cube (squares) can be subdivided into coplanar triangles.
The surface area does not change, but the number of faces increases.
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Definition AP: An abstract polyhedron is a three-dimensional AC complex
containing a single three-dimensional cell whose boundary is a two-dimensional
combinatorial manifold without boundary. The two-dimensional cells (2-cells) of
the polyhedron are its faces, the one-dimensional cells (1-cells) are its edges and
the zero-dimensional cells (0-cells) are its vertices or points.

An abstract polyhedron is called a geometric one if coordinates are assigned
to each of its vertices. We shall call an abstract geometric polyhedron an AG-
polyhedron. Each face of an AG-polyhedron PG must be planar. This means
that the coordinates of all 0-cells belonging to the boundary of a face Fi of PG
must satisfy a linear equation Hi(x, y, z) = 0. If these coordinates are coordi-
nates of some cells of a Cartesian AC complex A then we say that the polyhedron
PG is embedded into A or that A contains the polyhedron PG.

Definition CP: An AG-polyhedron PG is called convex if the coordinates of
each vertex of PG satisfy all the linear inequalities Hi(x, y, z) ≤ 0 correspond-
ing to all faces Fi of PG. The coefficients of the linear form Hi(x, y, z) are the
components of the outer normal of Fi.

A cell c of the complex A containing the convex AG-polyhedron PG is said to
lie in PG if the coordinates of c satisfy all the linear inequalities Hi(x, y, z) ≤ 0
of all faces Fi of PG.

Definition CH: The convex hull of a finite set V of voxels is the smallest con-
vex AG-polyhedron PG containing all voxels of the set V . ”Smallest” means
that there exists no convex AG-polyhedron different from PG which contains all
voxels of V and whose all vertices are in PG.

For the differentiation between voxel sets being convex or not, we need to define
what a convex voxel set actually is.

Definition DCS: A digital half-space is the set of all voxels whose coordinates
satisfy a linear inequality. A digital convex subset of the space is a non-empty
intersection of digital half-spaces.

3 The Algorithm

It is well known that every non-convex set can be considered as the sum or
the difference of convex sets. We use this property of non-convex sets to extend
the method of [8] to construct an abstract polyhedron from a non-convex set
of voxels by subtracting small convex hulls from an initial convex hull. This is
motivated by the imagination of modelling the surface through pressing faces of
the convex hull onto the voxel object.

3.1 Constructing the Convex Hull

The first step to build a non-convex abstract polyhedron consists in creating the
convex hull of the given voxel object V as described in [8]. The algorithm for
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constructing the convex hull consists of two parts: in the first part a subset of
vectors v pointing to voxels must be found which are candidates for the vertices
of the convex hull. The coordinates of the candidates are saved in an array L.
The second part constructs the convex hull of the set L.

From the point of view of AC complexes the given set V is the set of three-
dimensional cells (3-cells) of a subcomplex M of a three-dimensional Cartesian
AC complex A. The complex A represents the topological space in which our
procedure is acting. It is reasonable to accept that M is homogeneously three-
dimensional. This means that each cell of M whose dimension is less than 3 is
incident to at least one 3-cell of M . With other words, M has no ”loose” cells
of dimensions less than 3.

The problem of finding the vectors v can be defined as follows: A 0-cell is
called a convex 0-cell iff it is incident to exactly one 3-cell of M (Figure 1). All
3-cells incident to at least one convex 0-cell are the candidate vectors v. The
vectors v are stored in L.

Fig. 1. Four voxels and their convex 0-cells (depicted as black disks). Non-convex 0-
cells are depicted as circles. The voxel in the center of the front row is not incident to
any convex 0-cell and thus it is not a candidate vector.

As already mentioned, the second part of our algorithm is that of constructing
the convex hull of the set L of the candidate vectors v found by the first part.

To build the convex hull of L we first create a simple convex polyhedron
spanning four arbitrary non-coplanar voxels v of L. It is a tetrahedron. It will
be extended step by step until it becomes the convex hull of L. We call it the
current polyhedron CP .

The surface of the current polyhedron is represented with the data structure
called the two-dimensional cell list [5]. The cell list of a two-dimensional complex
consists in the general case of three sublists. The kth sublist contains all k-
dimensional cells (k-cells), k = 0, 1, 2. The 0-cells are the vertices, the 1-cells
are the edges, the 2-cells are the faces of the polyhedron. Each entry in the kth
sublist corresponds to a k-cell ck. The entry contains indices of all cells incident
to ck. The entry of a 0-cell contains also its coordinates.

The cell list according to this definition contains much redundancy, because it
contains for a pair of two incident cells ck and cm both the reference from ck to cm

and from cm to ck. The redundancy makes the computation faster, because cells
incident to each other may be found immediately, without a search. However,
for the exact reconstruction of the voxel set from the cell list the redundancy
can be eliminated to make the encoding more economical.
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The next step in constructing the convex hull is to extend the current polyhe-
dron while adding more and more voxels, some of which become vertices of the
convex hull. When the list L of the candidate vectors is exhausted, the current
polyhedron becomes the convex hull of M . The extension procedure is based on
the notion of visibility of faces which is defined as follows.

Definition VI: The face F of a convex polyhedron is visible from a cell c,
if c lies in the outer open half-space bounded by the face F , i.e. if the scalar
product (N, w) of the outer normal N of the face F and the vector w pointing
from a point Q in F to c, is positive. If the scalar product is negative then F is
said to be invisible from c. If the scalar product is equal to zero then F is said
to be coplanar with c.

To extend the current polyhedron the algorithm processes one voxel after another.
For any voxel v it computes the visibility of the faces of the polyhedron from v.
Consider first the simpler case when there are no faces of the current polyhedron,
which are coplanar with v. The algorithm labels each face of the current polyhe-
dron as being visible from v or not. If the set of visible faces is empty, then the voxel
v is located inside the polyhedron and may be discarded. If one or more faces are
visible, then the polyhedron is extended by the voxel v and some new faces. Each
new face connects v with one edge of the boundary of the set of visible faces. A new
face is a triangle having v as its vertex and one of the edges of the said boundary
as its base. All triangles are included into the cell list of the current polyhedron
while all visible faces are removed. Also each edge incident to two visible faces and
each vertex incident only to visible faces is removed.

��
��
��

��
��
��v

Fig. 2. The current polyhedron (a cube) being extended by the voxel v as a new vertex

In Figure 2 the boundary of the visible subset is shown by bold lines (solid or
dashed). The edges shown by dotted lines must be removed together with the
three faces visible from v. The algorithm repeats this procedure for all voxels
in L.

Consider now the problem of coplanar faces. There are three variants to treat
a face coplanar with a new voxel v. Two of them are quite easy, i.e. coplanar
faces can be treated as visible or as invisible ones. The third variant is a little bit
more sophisticated and treats coplanar faces neither as visible nor as invisible.

After having tested all three variants we came to the decision that the best
solution consists in treating coplanar faces as visible [8]. In this case the program
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creates sometimes many coplanar triangles which must be merged together. But
the procedure of merging triangles is rather simple and fast.

The procedure of adding new faces to the current polyhedron ends after pro-
cessing all candidate vectors in L. With this step the convex hull is completely
constructed and the first part of creating a polyhedral surface of the given voxel
object V ends.

3.2 Finding Concavities

As already mentioned, the convex hull is a good means to encode the surface of a
convex object. The convex hull of a convex set of voxels (according to Definition
DCS) never contains voxels of the background. If the given voxel object is not
convex, we have to find components of the set of background voxels included
into the convex hull. These components can be cavities, concavities and tunnels
[12].

Definition CO: A concavity is a component of background voxels inside the
convex hull incident to exactly one connected set of faces of the convex hull.

Due to this definition a concavity does not have to be a convex protrusion of the
background, i.e. it does not have to be convex.

Definition CA: A cavity is a component of background voxels inside the convex
hull, which is not incident to any face of the convex hull.

Definition TU: A tunnel is a component of background voxels inside the con-
vex hull incident to more than one connected set of faces of the convex hull. If
the tunnel is incident to exactly two connected sets it is called a non-branched
tunnel. If the number of connected sets of faces of the convex hull incident to
the component is greater than two, the tunnel is called a branched one.

In this paper we only deal with concavities. Cavities are a trivial problem and
will be mentioned later on. Tunnels are part of future work.

We use the algorithm described in [7] to find the components of the set of
background voxels inside the convex hull and classify them by the number of the
connected sets of faces of the convex hull which are incident to the component.

F

P

B

CH

C H

Fig. 3. Convex hull CH of an object (gray shaded). Some of the 0-cells of the back-
ground voxel component are located outside CH and thus there exists a visible face.



44 H. Schulz

To check whether a component of background voxels is incident to a set of
faces of the convex hull, we just have to compute the visibility of faces from
the 0-cells of the background component. If every 0-cell of a component has no
visible faces then the component is entirely located inside the hull and thus it
is a cavity. If one or more 0-cells have visible faces or one or more 0-cells are
coplanar with a set of faces then the component is incident to the hull, i.e. it is
a concavity or a tunnel (see Figure 3).
The components are labeled and thus we can modify the convex hull by treating
one component of background voxels after another.

3.3 Modification of the Convex Hull

After all components of background voxels inside the convex hull are found, we
can modify the convex hull. As already mentioned, the convex hull is a convex
polyhedron. After the first modification we can no longer speak of the convex
hull, because it is no longer a convex polyhedron. Hence we call the modified
hull current polyhedron again until it becomes a polyhedron with the desired
properties.

To modify the current polyhedron we first need to know which faces are
incident to the current background voxel component. This can be determined
by using again the notion of visibility. In the previous step we have labeled a
component if its 0-cells have visible faces and now we label the faces which are
visible from the 0-cells of the current background voxel component. This means
that a face F becomes labeled if the following criteria are all satisfied:

1. The face F is visible from some of the 0-cells of the background voxel com-
ponent or some 0-cells are coplanar with the face F .

2. If there is a 0-cell P outside H and a background voxel B inside or on H with
P ∈ Cl(B), then the projection of B onto the face F is inside the boundary
of F .

3. The 0-cell P does not lie on the boundary of the face F .

We want to mention that the steps of labeling the background voxel components
and labeling the corresponding faces can be merged together.

A topology preserving operation called “pressing-in” is applied to the set of
labeled faces (see Figure 4).

Definition PR: Pressing-in towards a non-empty set of cells located inside
a polyhedron H is a topology preserving operation which replaces a connected
set S1 of faces of H by a new connected set S2 of faces in such a way that the
boundaries of the sets S1 and S2 are identical.

In the simplest case the set S1 consists of one face only and thus it can be
interpreted as the base of a pyramid which has the set S2 as its sides. The apex
of the pyramid (P in Figure 4) is located inside the polyhedron. In the general
case the set S1 consists of several faces and the destination of the pressing-in is
not necessarily a single cell.
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Fig. 4. A cell P inside the polyhedron (a) and the resulting polyhedron after pressing-in
(b)

We perform the pressing-in by constructing a polyhedron around the back-
ground voxel component. As mentioned in the Introduction, we want to apply
our convex hull algorithm recursively to modify the convex hull of the voxel
object. This means that we now create the convex hull of the background voxel
component and modify it again and again until there are no object voxels outside
the polyhedron and no background voxels inside it. To do so we have to combine
the cell lists of the current polyhedron and that of the current polyhedron of the
background voxel component. But this is not trivial. Definition PR implies that
we can identify faces of both polyhedra, but this is not possible in the general
case (see Figure 5a).

To avoid identifying faces of these two polyhedra, which do not have iden-
tical boundaries, we do not construct the convex hull of the background voxel
component independently. A more precise approach consists in spanning the
convex hull by starting with the labeled faces of the current polyhedron. This
means that we span an initial polyhedron with this set of faces and a voxel
of the background component, which lies on the inside of the set of labeled
faces (Figure 5b). This initial polyhedron can be extended in the same way
as the tetrahedron being the initial convex hull. The result is the convex hull
of the set of labeled faces and the set of voxels of the background voxel com-
ponent lying inside the polyhedron before applying the pressing-in operation
(Figure 5c).

Another problem is that of the recognition of 0-cells outside a non-convex
polyhedron, because faces of such a polyhedron can be visible from 0-cells inside
a non-convex polyhedron. Therefore we need another method than the visibility
approach to decide for each 0-cell whether it is located in the inside or not. An
easy approach is to compute a ray from the current 0-cell to a point which is
certainly outside the polyhedron (i.e. a point on the boundary of the space) and
just to count the number of intersections of the ray with the polyhedron. If this
number is odd then the current 0-cell lies inside. This method is of course only
applicable for polyhedra with no self-intersections, but since we only deal with
binary voxel images, self-intersections do not appear.

At this stage of the modification we have the current polyhedron and a second
smaller polyhedron which has a connected set of faces in common with the first
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Fig. 5. (a) Convex hull CH of a given set of voxels and the convex hull CHbvc of the
background voxel component. Two 0-cells c0

1 and c0
2 of the background voxel component

are located outside CH . (b) Initial convex hull of the set of background voxels created
from a fixed face (bold line). (c) Resulting convex hull CHbvc of the background voxels.
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Fig. 6. CH and CHbvc with a common face (a) and the resulting polyhedron after the
modification step (b).

one (see Figure 6a). Now we perform our idea of recursivity by interpreting the
second polyhedron as the current polyhedron and we change the roles of object
and background voxels. Now we can apply the same algorithm to the new current
polyhedron and thus we search for object voxels inside this polyhedron for which
we have to do a pressing-in. This leads to a protuberance to the outside of the
first polyhedron.

It is always assured that the algorithm ends after a finite number of steps since
every step deals with a current polyhedron which includes a finite set of voxels
and a smaller polyhedron which includes a subset of the set of voxels inside the
first polyhedron. Hence the second polyhedron is smaller than the first one in
the sense that it includes a fewer number of voxels. This means that by reducing
the number of voxels in the current polyhedron the number of recursive steps
cannot be greater than the number of voxels inside the concavity.

As already mentioned in Section 3.2, the algorithm can also deal with cavities,
because it is a trivial problem. According to Definition CA cavities have no
connection to the outer surface of the polyhedron and thus we can independently
compute the convex hull of this background voxel component and modify it, if
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the cavity is a non-convex one. After applying the algorithm to the cavity we
have to change the orientation of the normal vectors of the faces to ensure that
they point to the outside of the surface of the voxel object, which means that
they point to the inside of the cavity.

We want to mention that our algorithm has an important drawback. At this
level of development it is not able to deal with a class of objects whose surfaces
have a genus greater than 0 or whose background voxel components have a
surface with a genus greater than 0, such as tori or mushrooms. This is justified
by the fact that the pressing-in does not work for a set of faces composing a
cycle. We are currently working on an improvement of our algorithm to solve
this problem.

4 Results of Computer Experiments

We have implemented the described algorithm and we have tested it with several
objects of different size and complexity.

One simple example is presented below in Figure 7-10 to show how interme-
diate and final results look like.

Figure 7 (left) shows the voxel object. The voxels are interpreted as cells of
an Euclidean complex and thus they are represented as small cubes. The object
consists of 4949 voxels. On the right hand side of Figure 7 there is the convex
hull CH surrounding the voxels, i.e. the centers of the cubes. The convex hull
consists of 288 faces, 530 edges and 244 vertices.

The convex hull CH of the given voxel object includes one component of
background voxels. The convex hull CHbvc of these background voxels is shown
on the left in Figure 8. It is created by starting with a set of 9 connected faces of
CH . Finally it consists of 32 faces and it is surrounding 835 background voxels,
but also 424 object voxels.

In this situation we apply our algorithm to the polyhedron shown in Figure 8
(left). We interpret the set of background voxels now as the set of object voxels
with the 424 object voxels as the set of background voxels inside the polyhedron.
The background voxels are composing two components. The convex hulls of these
components are shown on the right of Figure 8.

The left image in Figure 9 shows the polyhedral surface after applying only
the first modification of the convex hull, which corresponds to the unification
of CH and CHbvc, where the set of labeled faces is removed. This polyhedron
includes no voxels of the background, but two sets of object voxels are located
on the outside of the polyhedron.

On the right hand side of Figure 9 the resulting polyhedron after all modi-
fication steps is presented. The resulting polyhedron consists of 300 faces, 566
edges and 268 vertices.

Figure 10 shows the triangulation of this object with the Marching Cubes
method. It consists of 5184 triangles.

One of our primary goals concerning this algorithm is the efficiency of the
encoding. Therefore we have compared the results of our algorithm with that of
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Fig. 7. Example ”pac-man”. Left: The voxel object. Voxels are depicted as small cubes.
Right: Convex hull of of the centers of the small cubes.

Fig. 8. Left: Convex hull of the background voxels lying inside the convex hull of the
given object. Right: Convex hulls of the object voxels lying inside the convex hull of
the background voxels.

Fig. 9. Left: Polyhedron after subtracting the convex hull of the background voxels
only. Right: Resulting polyhedron after all modification steps.



Polyhedral Surface Approximation of Non-convex Voxel Sets 49

Fig. 10. Marching Cubes triangulation of the object of Figure 7

Table 1. Comparison of the memory requirements of the cell list and those of the
triangulation for the example of Figure 7

faces vertices integers
to be saved

MC-triangulation 5184 ∼2592 23328
modified convex hull 300 268 1936

the Marching Cubes triangulation method, which is very often used in practical
applications. As already mentioned in [8] we assume that 4.5 integers have to
be saved for each triangle within this method. Our algorithm produces a non-
redundant cell list containing 3 integers per vertex (its coordinates) and NFi

integers per face, where NFi is the number of vertices of face i. Table 1 presents
the obtained values for the memory requirements.

5 Conclusion

In this paper we present a new algorithm for computing a polyhedral surface
approximating a 3-dimensional digital object represented as a set of voxels. The
resulting polyhedral surface is an abstract polyhedron which is a particular case
of an abstract cell complex. The polyhedron is encoded by the non-redundant
version of the well-known 2-dimensional cell list which is a good tool to save
topological and geometric information efficiently and without redundancy. The
cell list also provides the possibility to exactly reconstruct the voxel object.

The algorithm presented in this paper is still under progress. There are some
drawbacks, especially the one mentioned in section 3.3, concerning surfaces with
a genus greater than 0. Also the labeling criteria are still under investigation.
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As mentioned in the Introduction, we also work on the proof of the minimum
surface area property of the polyhedral surface.

The algorithm can be applied in a variety of tasks. Especially in the field of
3-dimensional image analysis and computer graphics it can be used to visualize
voxel sets by polyhedra and to store large sets of voxels efficiently and without
any loss of information.
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Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 366–393. Springer,
Heidelberg (2004)

8. Kovalevsky, V.A., Schulz, H.: Convex Hulls in a 3-dimensional Space. In: Klette, R.,
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Abstract. Recently, a distance function was defined on the face-
centered cubic and body-centered cubic grids by combining weights and
neighborhood sequences. These distances share many properties with
traditional path-based distance functions, such as the city-block dis-
tance, but are less rotational dependent. We introduce four different
error functions which are used to find the optimal weights and neighbor-
hood sequences that can be used to define the distance functions with low
rotational dependency.

1 Introduction

When using non-standard grids such as the face-centered cubic (fcc) grid and the
body-centered cubic (bcc) grid for 3D images, less samples are needed to obtain
the same representation/reconstruction quality compared to the cubic grid [10].
This is one reason for the increasing interest in using these grids in, e.g., image
acquisition [10], image processing [14,6,15], and visualization [2,17].

Measuring distances on digital grids is of great importance both in theory
and in many applications. Because of its low rotational dependency, the Eu-
clidean distance is often used as distance function. In digital grids, however,
the Euclidean distance may not be the best option [9]. Both from a theoretical
point of view and for several applications path-based digital distances are better
options. For example, when minimal cost-paths are computed, a distance func-
tion defined as the minimal cost path between any two points is better suited,
see, e.g., [3], where the constrained distance transform is computed using the
Euclidean distance resulting in a complex algorithm. The corresponding algo-
rithm using a path-based approach is simple, fast, and easy to generalize to
higher dimensions [21,18]. Examples of path-based distances are weighted dis-
tances, where weights define the cost (distance) between neighboring grid points
[1,6,14], and distances based on neighborhood sequences, where the cost is fixed
but the adjacency relation is allowed to vary along the path [13,15]. These path-
based distance functions are generalizations of the well-known city-block and
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chessboard distance function defined for the square grid in [12]. We will abbrevi-
ate neighborhood sequence with ns, distance based on neighborhood sequences
with ns-distances, and weighted distances based on neighborhood sequences with
weighted ns-distances or just wns-distances.

Many approaches where the deviation from the Euclidean distance is mini-
mized in order to find the optimal ns (ns-distances) or weights (weighted dis-
tances) have been proposed for Z

2. In most papers, error functions minimizing
the asymptotic maximum difference of a Euclidean ball and a ball obtained by
using ns-distances [23,5,4] or weighted distances [1,22,6] are minimized. Other
approaches have also been considered for ns-distances. In [7], optimal ns for the
2D hexagonal and triangular grids are found using a compactness ratio – the
ratio between the squared perimeter and the area of the convex hull of the disks
obtained by using ns. In [8], the symmetric difference is used for ns in Z

2 and in
[11], the following error functions are considered for ns on the fcc and the bcc
grids: absolute error, relative error, compactness ratio, maximal inscribed ball,
and minimal covering ball.

In [23], a general definition allowing both weights and ns was presented. The
full potential of using both weights and ns was discovered in [19], where ns and
weights were together used in the sense of [23], but with the well-known natural
neighborhood structure of Z

2. In [19], the basic theory for weighted ns-distances
on the square grid is presented including a formula for the distance between two
points, conditions for metricity, optimal weight calculation, and an algorithm to
compute the distance transform. In [16], some results for weighted ns-distances
on the fcc and bcc grids were presented. The theory for weighted ns-distances
on the fcc and bcc grids was further developed in [20] by presenting sufficient
conditions for metricity and algorithms that can be used to compute the distance
transform and a minimal cost-path between two points.

The asymptotic error using the compactness ratio was used to find the opti-
mal weights and ns for weighted ns-distances on the fcc and bcc grids in [16].
The analysis presented in [16] is extended in this paper by considering the rela-
tive error, the compactness ratio, the maximal inscribed ball, and the minimal
covering ball. Also, we analyze the behavior when ns of finite length is used.

Note that the results presented here also applies to weighted distances and
ns-distances, since they are both special cases of the proposed distance function.
The distance function proposed here is used to find optimal weights for the
weighted distance and optimal ns for ns-distances.

2 Basic Notions and Previous Results

The following definitions of the face-centered cubic (fcc: F) and body-centered
cubic (bcc: B) grids are used:

F = {(x, y, z) : x, y, z ∈ Z and x + y + z ≡ 0 (mod 2)}. (1)
B = {(x, y, z) : x, y, z ∈ Z and x ≡ y ≡ z (mod 2)}. (2)
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Fig. 1. The grid points corresponding to the dark and the light grey voxels are 1-
neighbors. The grid points corresponding to the dark grey and white voxels are (strict)
2-neighbors. Left: fcc, right: bcc.

For results that are valid for both the fcc grid F and the bcc grid B, the notation
G is used. Two distinct grid points p1 = (x1, y1, z1),p2 = (x2, y2, z2) ∈ G are
ρ-neighbors, 1 ≤ ρ ≤ 2, if

1. |x1 − x2|+ |y1 − y2|+ |z1 − z2| ≤ 3 and
2. max {|x1 − x2|, |y1 − y2|, |z1 − z2|} ≤ ρ

The points p1,p2 are adjacent if p1 and p2 are ρ-neighbors for some ρ. The
2-neighbors which are not 1-neighbors are called strict 2-neighbors. The neigh-
borhood relations are visualized in Figure 1 by showing the Voronoi regions, i.e.
the voxels, corresponding to some adjacent grid points.

A ns B is a sequence B = (b(i))∞i=1, where each b(i) denotes a neighborhood
relation in G. If B is periodic, i.e., if for some fixed strictly positive l ∈ Z+,
b(i) = b(i + l) is valid for all i ∈ Z+, then we write B = (b(1), b(2), . . . , b(l)). A
path, denoted P , in a grid is a sequence p0,p1, . . . ,pn of adjacent grid points.
A path is a B-path of length n if, for all i ∈ {1, 2, . . . , n}, pi−1 and pi are
b(i)-neighbors. The notation 1- and (strict) 2-steps will be used for a step to a
1-neighbor and step to a (strict) 2-neighbor, respectively.

Definition 1. Given the ns B, the ns-distance d(p0,pn; B) between the points
p0 and pn is the length of (one of) the shortest B-path(s) between the points.

Let the real numbers α and β (the weights) and a path P of length n, where
exactly l (l ≤ n) adjacent grid points in the path are strict 2-neighbors, be
given. The length of the (α, β)-weighted B-path P is (n− l)α+ lβ. The B-path P
between the points p0 and pn is a minimal cost (α, β)-weighted B-path between
the points p0 and pn if no other (α, β)-weighted B-path between the points is
shorter than the length of the (α, β)-weighted B-path P .

Definition 2. Given the ns B and the weights α, β, the weighted ns-distance
dα,β(p0,pn; B) is the length of (one of) the minimal cost (α, β)-weighted B-
path(s) between the points.

The following notation is used:

1k
B = |{i : b(i) = 1, 1 ≤ i ≤ k}| and

2k
B = |{i : b(i) = 2, 1 ≤ i ≤ k}|.
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We now recall from [16] the following two theorems giving the distance be-
tween two grid points (0, 0, 0) and (x, y, z), where x ≥ y ≥ z ≥ 0. We remark
that by translation-invariance and symmetry, the distance between any two grid
points is given by the formulas below.

Theorem 1. Let the ns B, the weights α, β and the point (x, y, z) ∈ F, where
x ≥ y ≥ z ≥ 0, be given. The weighted ns-distance between 0 and (x, y, z) is
given by

dα,β (0, (x, y, z); B) =
{

x+y+z
2 · α if x ≤ y + z

(2k − x) · α + (x− k) · β otherwise,

where k = min
k

: k ≥ max
(

x + y + z

2
, x− 2k

B

)

.

The value of k is the least integer that is not less than x+y+z
2 such that 2k

B+k ≥ x.

Theorem 2. Let the ns B, the weights α, β, and the point (x, y, z) ∈ B, where
x ≥ y ≥ z ≥ 0, be given. The weighted ns-distance between 0 and (x, y, z) is
given by

dα,β (0, (x, y, z); B) = (2k − x) · α + (x− k) · β, where

k = min
k

: k ≥ max
(

x + y

2
, x− 2k

B

)

.

Here k is the least integer which is not less than x+y
2 such that 2k

B + k ≥ x.
Not all weights and ns give metric distance functions. The following sufficient

conditions for metricity were derived in [20].

Theorem 3. If
N∑

i=1

b(i) ≤
j+N−1∑

i=j

b(i) ∀j, N ≥ 1 and

0 < α ≤ β ≤ 2α

then dα,β(·, ·; B) is a metric on the fcc and bcc grids.

3 Optimization of Weights and Neighborhood Sequences

The optimization is carried out in R
3 by finding the best shape of polyhedra

corresponding to balls of constant radii using the proposed distance functions.
To do this, the distance functions presented for the fcc and bcc grids in the
previous section are stated in a form that is valid for all points (x, y, z) ∈ R

3,
where x ≥ y ≥ z ≥ 0. Note that this gives the asymptotic shape of the balls.
The following distance functions are considered:

dfcc
α,β (0, (x, y, z); γ) =

{
x+y+z

2 · α if x ≤ y + z
(2k − x) · α + (x− k) · β otherwise,

where k = min
k

: k ≥ max
(

x + y + z

2
,

x

2− γ

)
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and

dbcc
α,β (0, (x, y, z); γ) = (2k − x) · α + (x− k) · β, where

k = min
k

: k ≥ max
(

x + y

2
,

x

2− γ

)

,

where k ∈ R and γ ∈ R, 0 ≤ γ ≤ 1 is the fraction of the steps where 2-steps are
not allowed (so 1k

B and 2k
B corresponds to γk and (1− γ)k, respectively). Note

that k ≥ x/(2 − γ) if and only if (1 − γ)k + k ≥ x, which is analogous to the
condition 2k

B +k ≥ x of Theorems 1 and 2. In this way we obtain a generalization

Fig. 2. Shapes of balls for dfcc
α,β(·, ·; γ) (left 5 × 5 block) and dbcc

α,β(·, ·; γ) (right 5 × 5
block) for a fixed radius r, α = 1, and (left to right) γ = 0, 0.25, 0.5, 0.75, 1 and (top
to bottom) β = 1, 1.25, 1.5, 1.75, 2

1 1.25 1.5 1.75 2
0

0.25

0.5

0.75

1

C
2

C
3

Fig. 3. The domain for C2 and C3 in Table 1
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of the distance functions in discrete space G valid for all points (x, y, z) where
x ≥ y ≥ z ≥ 0 in continuous space R

3. By considering

dfcc
α,β (0, (x, y, z); γ) = r and dbcc

α,β (0, (x, y, z); γ) = r, (3)

for some radius r, the points on a sphere of constant radius r are found. When
γ ∈ R (0 < γ < 1) the functions dfcc and dbcc can be understood as asymptotic
approximations to the distance functions of Theorems 1 and 2 for large values
of x.

For any triplet α, β, γ (α, β > 0 and 0 ≤ γ ≤ 1), (3) defines polyhedra P
in R

3. The vertices of the polyhedra are derived in [16]. Based on this, up to
permutation of the coordinates and change of signs, the vertices of polyhedra
with radius r are

r

(
2− γ

γα + β − βγ
,

γ

γα + β − βγ
, 0

)

and r

(
1
α

,
1
α

, 0
)

for dfcc and

r

(
2− γ

γα + β − βγ
,

γ

γα + β − βγ
,

γ

γα + β − βγ

)

and r

(
1
α

,
1
α

,
1
α

)

for dbcc

The shape of the polyhedra obtained for some values of α, β, γ are shown in
Figure 2 for the fcc and bcc grids, respectively. In approximations the ratio of
α and β matters. Let AP be the surface area and VP the volume of the (region
enclosed by the) polyhedron P . The values of AP and VP are determined by the
vertices of the polyhedra.

Let Br be a Euclidean ball of radius r. The following error functions are
considered

E1 = max
p,q∈∂P

( |p|
|q|

)

(relative error) (4)

E2 =
A3

P

V 2
P

36π
(compactness ratio) (5)

E3 = min
r:Br⊂P

(VP /VBr) (maximal inscribed ball) (6)

E4 = min
r:P⊂Br

(VBr/VP ) (minimal covering ball) (7)

These error functions attain their minimum value 1 when A is the surface area
and V is the volume of a Euclidean ball. The values of α, β, and γ that minimize
the error functions are computed numerically. All error functions attain a mini-
mum value within the domain 0 < α ≤ β ≤ 2α, 0 ≤ γ ≤ 1, so the computation is
straight-forward. For the relative error on the fcc grid, the optimum is obtained
on a region as shown in Figure 3. The optimal values are found in Table 1 and
visualized by the shape of the corresponding polyhedra in Figure 4.

In Table 2, the asymptotic behavior is shown by letting α = 1 and β be
constant and for each k, 1 ≤ k ≤ 1000 using a ns B of length k that approximates
the optimal fraction γ. The values of the error functions and k are plotted in the
figures.
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E1

fcc bcc

β =
√

2 β = 1 β = 1.5 β = 1.1547 β = 1 β = 1

γ = 0 γ = 0.8453 γ = 0.3 γ = 0 γ = 2 − √
2 γ = 2 − √

2

E2

fcc bcc

β = 1.5302 β = 1 β = 1.4862 β = 1.2808 β = 1 β = 1.2199

γ = 0 γ = 0.8453 γ = 0.4868 γ = 0 γ = 2 − √
2 γ = 0.4525

E3

fcc bcc

β = 5/3 β = 1 β = 5/3 β = 1.2808 β = 1 β = 1.2199

γ = 0 γ = 0.8453 γ = 0.3280 γ = 0 γ = 2 − √
2 γ = 0.4525

E4

fcc bcc

β =
√

2 β = 1 β = 1.2179 β = 1.1547 β = 1 β = 1
γ = 0 γ = 0.7408 γ = 0.5425 γ = 0 γ = 1/3 γ = 1/3

Fig. 4. Shapes of balls using α = 1 and values of β and γ that minimize E1–E4, see
Table 1

In Table 1, C1 can be any value in the range
√

2 ≤ C1 ≤ 5/3. (8)
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Table 1. Performance of wns-, weighted- (w), and ns-distances using the error functions
E1−E4 defined in the text. The optima of the error functions are attained whenever t is
a strictly positive real number. The values shown in bold are fixed in the optimization.
The parameters C1, C2, and C3 are related as is shown in (8) and (9).

Relative error, E1

fcc bcc

Name α β γ E1 α β γ E1

w t C1t 0 1.2247 t 1.1547t 0 1.2393

ns 1 1 0.8453 1.2393 1 1 [1/3, 2 − √
2] 1.2247

wns t C2t C3 1.2247 t t [1/3, 2 − √
2] 1.2247

Compactness ratio, E2

fcc bcc

Name α β γ E2 α β γ E2

w t 1.5302t 0 1.1367 t 1.2808t 0 1.1815

ns 1 1 0.8453 1.2794 1 1 2 − √
2 1.2147

wns t 1.4862t 0.4868 1.1267 t 1.2199t 0.4525 1.1578

Maximal inscribed ball, E3

fcc bcc

Name α β γ E3 α β γ E3

w t (5/3)t 0 1.1578 t 1.2808t 0 1.1815

ns 1 1 0.8453 1.2794 1 1 2 − √
2 1.2147

wns t (5/3)t 0.3280 1.1563 t 1.2199t 0.4525 1.1578

Minimal covering ball, E4

fcc bcc

Name α β γ E4 α β γ E4

w t
√

2t 0 1.4234 t 1.1547t 0 1.5708

ns 1 1 0.7408 1.4448 1 1 1/3 1.3860

wns t 1.2179t 0.5425 1.3272 t t 1/3 1.3860

Moreover, C3 can be any value in the range 0 ≤ C3 ≤ 2(
√

2 − 1) and C2 any
value satisfying the following inequalities (see also Figure 3):

√
C2

3 + 2− 2C3 − C3

1− C3
≤ C2 ≤ min

(√
3− C3

(
1
2

√
3 + 1

)

1− C3
,
5
3

)

. (9)

The plots in Table 2 show how the error functions perform for ns of finite
lengths. Neighborhood sequences obtained by the following recursive formula
are used

b(k + 1) =
{

1 if 1k
B < γk,

2 otherwise.

The value of γ is shown in Table 1. For the cases when γ is not uniquely defined,
we use constant values within the allowed interval. The same thing applies to β.
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Table 2. Optimal values of E1–E4 (vertical axis) on the fcc and bcc grid for neigh-
bourhood sequences of length k (0 < k ≤ 1000, horizontal axis showing log k) with
α = 1. See Table 1 for asymptotic optima.

E1

fcc bcc

ns weighted ns ns weighted ns
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4 Conclusions

By introducing a number of error functions that all favor “round” balls (in
the Euclidean sense), the weighted ns-distance is analyzed for the fcc and bcc
grids. It turns out that the optimal parameters for the special cases of weighted
distances (γ = 0 or B = (2)) and ns-distances (α = β = 1) are also found from
this procedure by keeping one of the parameters fixed in the optimization. The
same weights and neighborhood sequences as were derived for weighted distances
[14,6] and ns-distances [15] are found in this paper. Figure 2 gives an overview
of this fact – weighted distances are shown in the left columns (γ = 0) and
ns-distances are shown in the top rows (β = 1). We also note that, as expected,
the value of the error functions for the wns distance function are lower than (or,
in some cases, equal to) the weighted distance and ns-distance.

In the optimization, we let γ represent the fraction of 1:s in the ns. We note
that when γ is fixed to 0 (for weighted distances), this corresponds to a ns with
only 2:s. This can be attained for a neighborhood sequence of any length. There-
fore, in this case the optimum is not asymptotic and thus, the error is valid also
for short distances (between e.g. neighboring grid points). When γ is also sub-
ject to optimization (i.e. when the neighborhood sequence is used to define the
distance function), the error functions have an asymptotic behavior. However,
some of the optima for the relative error (E1) are located on regions where E1 is
constant. For example, E1 for the weighted ns is optimal when γ = 0, i.e. for the
weighted distance, and therefore the optimum is attained for any neighborhood
sequence consisting of only 2:s. See Table 2 and Figure 3. This indicates that this
error function, which has been widely used in the literature, is not well-suited
for finding the optimal weights and ns here. The reason that E1 is minimal on
a region (and not a point) is that there are two vertices and two surfaces that
have points that can be at minimal distance (up to symmetry). Thus, there are
more degrees of freedom than the restrictions in the optimization process. For
the other error functions (E2–E4), differentiable functions are defined and they
have all a single minimum, see Table 1.

We note that the error functions E2 (compactness ratio) and E3 (maximal
inscribed ball) give the same asymptotic optimal result for the bcc grid and the
same for ns-distances on the fcc grid, see Table 1. However, as is seen in Table 2,
the error functions perform differently for finite neighborhood sequences. This
illustrates that the different error functions are different, even though they all
are used to approximate the Euclidean distance. Different applications require
different aspects of the “roundness” of the balls.

Analysing the plots in Table 1, we see that the error converges quite fast and
that a ns of length (period) 10 is sufficient in general.

The application in which the distance function will be applied should be used
to select which error function that should be considered. Also, by using Theo-
rem 3, it is easy to find neighborhood sequences such that the resulting distance
function is a metric, which is preferable in many applications. Intuitively, the
polyhedra that best approximate the Euclidean ball are given by a distance
function where both γ and β are non-trivial, see Figure 2. From the “optimal
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shapes” in Figure 4, we see that this is what, e.g., the compactness ratio E2 fa-
vors. Thus, without any specific application in mind, we suggest the parameters
B = (1, 2), β = 1.4862α for the fcc grid and β = 1.2199α for the bcc grid. This
gives E2 = 1.1276 for the fcc grid (the optimum is 1.12757 and the approximated
value is 1.12760) and E2 = 1.1591 (the optimum is 1.1578) for the bcc grid. We
conclude that we get a good approximation of the optimal values also with a
short neighborhood sequence.
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Abstract. In this paper, we present an algorithm for computing effi-
ciently homology generators of 3D subdivided orientable objects which
can contain tunnels and cavities. Starting with an initial subdivision,
represented with a generalized map where every cell is a topological ball,
the number of cells is reduced using simplification operations (removal
of cells), while preserving homology. We obtain a minimal representation
which is homologous to the initial object. A set of homology generators
is then directly deduced on the simplified 3D object.

Keywords: topological features, homology generators, generalized maps.

1 Introduction

In this paper, we present an algorithm for computing efficiently the three dimen-
sional minimal generalized map homologous to a given 3D object. Then we show
how cells that belong to homology group generators can be directly characterized
onto this minimal object.

Homology is a topological invariant, classically studied in algebraic topol-
ogy [3], which characterizes an object by its "holes" in each dimension. This
corresponds to connected components in dimension 0, tunnels in dimension 1,
cavities in dimension 2; this notion of hole can be generalized in any dimension.
For each dimension d, the number of d−dimensional holes of a given object is
called its dth Betti number. Homology group generators are d-dimensional paths
(edges, faces) that surround the d-dimensional holes.

Generalized maps [8] are a combinatorial cellular structure which can be used
to represent both topological and geometrical information of a three dimensional
subdivision, with particular properties that makes it a good model for features
extraction. In this work, generalized maps are used to compute a minimal cell
decomposition (called minimal map) of a 3-manifold in R

3 with the same homol-
ogy as the initial 3D object. For that, we extend in 3D the work of [2]. Starting
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from the initial subdivision, where every cell is equivalent to a topological ball,
the number of cells is progressively reduced using removal operations [1]. At the
end of the simplification, we show that the minimal obtained object is homolo-
gous to the initial subdivision. Moreover, this minimal map allows us to directly
characterize cells of the subdivision that belong to homology generators.

This paper is organized as follows. In Section 2, basic notions related to gen-
eralized maps and homology groups are recalled. The removal operations, which
are used to compute a minimal map are introduced. In Section 3, the algorithm
for computing a minimal map is detailed, and its complexity is discussed. We
give the arguments to show that our algorithm provides a minimal object with
the same homology as the initial one. Finally, Section 4 concludes and gives some
perspectives.

2 Preliminaries

In this section some basic notions are presented. Our algorithm deals with subdi-
visions of 3D topological spaces. A subdivision is a partition into 4 subsets whose
elements are {0, 1, 2, 3}-cells of dimension 0, 1, 2 and 3 (respectively called ver-
tices, edges, faces and volumes). The border of an i-cell is a set of (j<i)-cells.
Two cells are incident if one belongs to the border of the other, and two i-cells
are adjacent if they are both incident to a common (j<i)-cell. The cell degree of
an i-cell c is the number of distinct (i+1)-cells incident to c. We only consider
quasi-manifolds1.

Generalized Maps. For 3D quasi-manifolds, incidence and adjacency relations
can be represented using 3-dimensional generalized maps (3-G-maps) [7]. Intu-
itively, a 3D generalized map can be obtained by successive (from volumes to
vertices) decompositions of a 3D object into elementary elements called darts.
Then, adjacency relations between i-cells are reported onto darts (denoted αi).
Involution2 αi connects the two darts incident to the two adjacent i-cells incident
to the darts (see [7] for a formal definition).

Within the generalized map framework, all cells are implicitly represented
through the notion of orbit. Given, {p1, . . . , pj}, a set of involutions, and a dart
d, an orbit < p1, . . . , pj > (d) is the set of darts that can be reached with a
breadth-first search algorithm, starting with d, and using all combinations of pi

∀k, 1 ≤ k ≤ j.

Removal Operations. Removal operations are the basic operations used dur-
ing our algorithm. The removal of an i-cell c (called i-removal of c) leads to
the merging of the two (i+1)-cells incident to c. For 3D subdivisions, i-removal
1 A n-dimensional quasi-manifold is an nD space subdivision which can be obtained

by gluing together n-dimensional cells along (n-1)-dimensional cells. In such subdi-
vision, an (n-1)-cell cannot belong to the boundary of more than two n-cells. This
notion is weaker that the manifold property, see [7].

2 An involution f on S is a one to one mapping from S onto S such that f = f−1.
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operations are defined for i = 0, 1, 2 (see [1] for the definition of removal opera-
tions). The i-removal operation consists mainly in locally modify the αi relation
for each dart that belongs to the neighborhood of the removed cell.

Homology. In this part, basic homology notions are recalled; interested readers
can find more details in [3] for algebraic approach and [4] for more computational
approach. The notion of homology is defined in an algebraic way using the sets
of i−cells used to describe the 3D manifold. Within this context, a p-chain (i.e.
a chain of dimension p) is a formal sum of p-cells. From this, the group Cp

of p-chains is defined. The boundary of a p-chain is defined as the sum of the
boundaries of its p-cells. Note that the boundary of a p-chain must be a (p− 1)-
chain. The set of p-chains which have a null boundary (i.e. p-cycles) is a subgroup
of Cp (denoted Zp). The set of p-chains which are boundaries of a (p + 1)-chain
(i.e. p-boundaries) form a subgroup of Cp (denoted Bp).

An essential property is that the boundary of any boundary is null. Hence,
every boundary is a cycle and Bp is contained in Zp. Two p-cycles z1 and z2 are
homologous if their difference is a boundary, i.e. there is a p + 1-chain f such
that z1 = z2 + ∂f . From this, an equivalence relation can be defined and the
homology class of z is the set {z + b | b ∈ Bp}. The homology group of dimension
p, denoted Hp, is defined as the quotient group Zp/Bp, and its elements are the
homology classes. For a group G, a set of generators is a maximal subset S of
elements of G, such that every element of G can uniquely be defined as a linear
combination of elements of S.

3 Computation of Homology Generators

In this section, we present an algorithm for computing the generators of homol-
ogy groups of 3D orientable objects with cavities, i.e. an object bounded by one
or more orientable surfaces.

3.1 Related Works

In [2], the authors propose an algorithm for computing a minimal representation
of a 2D surface. It is shown that the homology generators H1 can be directly
deduced from this minimal representation.

In [9], the authors study the homology of 3D manifolds object X bounded
by several surfaces. Indeed the considered objects are 3D balls with tunnels
and cavities. For example, Fig. 1(a) illustrates a 3D object which contains three
tunnels and two cavities. The authors then show how to compute homology
generators H1 and H2 of such objects. Moreover, it is shown that if X is bounded
by j +1 surfaces s0, ..., sj , then the set {s1, ..., sj} is a basis of H2(X). They also
introduce the notion of longitudinal and latitudinal generators of a surface and
show that if s0 denotes the external boundary of X , then the set of latitudinal
generators of {s1, ..., sj} together with the longitudinal generators of s0 forms
a basis of H1(X) (s0 is called external surface, others si are called internal
surfaces). For example, on Fig. 1(b), the homology generators of the object
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(a) (b)

Fig. 1. (a): a 3D object with 3 tunnels and 2 cavities, (b): the latitudinal generator
of the torus cavity together with the longitudinal generators of the external boundary
forms a basis of the first homology group of the object

represented in (a) is made of the 3 longitudinal generators of the external surface
together with the latitudinal generator of the torus cavity. Note that the first
homology groups of a sphere is trivial.

3.2 Simplification Algorithm

In this section, we extend the algorithm presented in [2] to 3D regions with
cavities and tunnels. Our algorithm, given in Algorithm 1, provides the same
result as in [9] but by working only with the initial subdivision of the object,
and use basic simplification operations and combinatorial characteristics of cells.

Starting from a subdivision of a 3D object, where each cell is homeomorphic
to a topological balls, we simplify progressively the subdivision, by decreasing
cell dimension. First we remove faces (i.e. 2-cells) while keeping the volume
homeomorphic to a topological ball. For that, we keep fictive faces, i.e. faces
that are “inside” the volume, and whose removal involves map disconnection.
We obtain a representation made of only one volume. To compute the minimal
representation for other cells, we use the algorithm of [2] on each surface of the
map. But for that, it is necessary to remove all the fictive faces in order to obtain
2D objects. After having computed the minimal representation of each surface,
we need to reconstruct the minimal representation of the 3D object. This is
achieved by adding the minimal number of fictive faces in order to obtain a
connected volume homeomorphic to a topological ball.

This minimal subdivision is homologous to the initial object, and allows to
directly compute the homology generators of the initial object by simple cell
characterization. Moreover, this principle gives some perspectives to generalize
our approach to n-dimensional objects.

Now we detail more precisely each step of our algorithm. The first simplifica-
tion step (line 1 of Algorithm 1) is similar to the algorithm described in [2], which
provides a minimal representation (in term of cells) in the case of 3D objects
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Algorithm 1. Simplification of a 3D subdivision in its minimal
homologous form.

Input: A generalized map M representing an orientable subdivision of a 3D
object such that each cell is homeomorphic to a topological balls

Output: The minimal subdivision homologous to M

1 foreach face f of the map do
if the degree of f is 2 then

Remove f ;
else if f is a dangling face then

push(P, f);
repeat

f ← pop(P );
push in P all the dangling faces adjacent to f ;
Remove f ;

until empty(P ) ;
else Mark f as fictive face;

2 Mark external surface, without considering fictive faces;
3 Remove all fictive faces;
4 Compute the H1 generators of each surface;
5 if the external surface is a sphere then

ext ← the only edge of the external surface;
else for one edge out of two e of the external surface do

Add a fictive face along e;
ext ← e;

foreach internal surface s do
if s is a sphere then

int ← the only edge of s;
else for one edge out of two e of s do

Add a fictive face along e;
int ← e;

Add a fictive face between int and ext;

bounded by only one surface. The difference concerns the dimension of processed
cells, since we need here to consider in first volumes (3-cells) by removing faces
(2-cells), while in [2] faces (2-cells) are processed by removing edges (1-cells).

During this step, we remove either degree two faces (i.e. faces between two
different volumes), or dangling faces (i.e. faces inside a volume). Indeed, both
faces can be removed without modifying the homology of the subdivision. When
we remove a dangling face f , we need to reconsider dangling faces adjacent to
f . Indeed, some faces adjacent to f can be non-dangling before f was removed
and become dangling after its removal, hence non minimal subdivision can be
obtained. To reconsider these faces, we use a stack of dart which contains one
dart of each reconsidered face, and when we remove a dangling face, we put in
this stack one dart for each dangling adjacent faces.

The subdivision obtained after applying the first step is composed by only
one volume homeomorphic to a 3D ball, some real faces (faces with each dart
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(a) (b)

Fig. 2. (a) After the first simplification step, the 3D object contains some fictive faces.
Black faces are fictive faces which stop up the tunnels, and black faces marked with
crosses are fictive faces that link the different surfaces. (b) Result obtained after having
disconnected surfaces and compute H1 generators for each surface. External surface is
represented by 6 edges and 1 vertex, the torus cavity is represented by 2 edges and 1
vertex and the sphere by 1 edge and 2 vertices. The obtained map is disconnected in
three connected components.

3-free) and some fictive faces (faces with each dart not 3-free). Fig. 2(a) illustrates
a possible subdivision that can be obtained after the first simplification step. In
this subdivision, there is exactly one volume, and thus the non 3-free darts
belong necessarily to fictive faces (i.e. degree one faces incident twice to the
volume). Note that there are two types of fictive faces: the ones which link
different surfaces in order to keep only one connected component, and the ones
which stop up the tunnels, and that allow to keep the volume homeomorphic to
a topological ball.

In the second step (line 2 of Algorithm 1), we work on each surface. Firstly,
we mark the external surface. This step is necessary since H1 generators are lon-
gitudinal for external surface whereas they are latitudinal for internal surfaces.
Finding a dart of the external surface can be achieved directly by searching
among all the darts the one associated with the smaller 3D coordinates. Start-
ing from this dart, we can run through all the darts of the external surface by
using a breadth first search algorithm which uses involutions α0, α1, and α2, and
which jumps over darts of fictive faces. Darts not 3-free belong to fictive faces,
and darts 3-free and non-marked belong to internal surfaces.

Then, all the fictive faces are removed in order to continue the simplifications
in smaller dimension (line 3 of Algorithm 1). The next step (line 4 of Algorithm 1)
consists in computing independently the H1 generators for each surface. This
step is not detailed here since it is achieved by using the work of [2].

After this step, we obtain the minimal representation of each surface, com-
posed with one face, one edge and two vertex if the corresponding surface is a
sphere, and composed with one face, 2k edges and one vertex if the correspond-
ing surface is a torus with k holes. Each edge of the minimal representation
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(a) (b)

Fig. 3. (a) The minimal map obtained at the end of our algorithm (partial repre-
sentation, fictive faces which link internal surfaces and the external surface are not
represented.). This map is homologous to the initial subdivision. (b) H1 generators are
composed with all the edges non-incident to fictive faces, and non-incident to spheres.

belong to an H1 generator of the 2D object, except if the corresponding surface
is a sphere. Indeed, in such a case, there is no H1 generator (see Fig. 2(b)).

Now, we have all necessary information to reconstruct the minimal repre-
sentation of the initial 3D subdivision. This is the goal of the last step of our
algorithm (line 5 of Algorithm 1). We firstly add fictive faces along one edge out
of two of each surface, except for surfaces which represent spheres. This step is
necessary to stop up the tunnels, and then obtain a volume homeomorphic to a
topological ball. There are two cases to consider: if the surface is a sphere, there
is no fictive face to add, otherwise the surface is a torus with k holes, and in
this case there are k fictive faces to add in order to cut all the tunnels. Since
the surface is composed with 2k edges in its minimal representation, to add k
fictive faces, we just need to add one fictive face along one edge out of two. Then,
fictive faces are added in order to connect each internal face with the external
face (Fig. 3(a)).

After these two steps, we obtain a map where each cell is homeomorphic to
a topological ball. This is necessary in order to ensure that this map is homol-
ogous to the initial subdivision. Moreover, this map is composed with j + 1
real faces, one for each surface (external and internal surfaces) of the initial
subdivision.

This minimal map M gives directly the homology generators:

1. H2 generator is composed with all the real faces that belong to internal
surfaces of M ;

2. H1 generator is composed with all the edges of M not incident to fictive
faces, and which are not incident to a sphere (see Fig. 2);

3. H0 generator is always isomorphic to Z since we only consider one connected
object.
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3.3 Validity of the Method

In this section, we use the works of [5] and [9] to show that the resulting object
is minimal; homology is preserved; and homology generators can be directly
characterized.

The Object is Minimal and Homology is Preserved. The first step of the
algorithm (the simplification process) preserves the homology. In [5], the authors
use interior face reduction to simplify a simplicial complex. These reductions are
equivalent to the removal operations used in [2] which consist in taking a common
i-face c of exactly two (i + 1)-simplices a and b, and delete c and replace b and
c by a cell which represents their union. It is proven in [5] that interior face
reductions preserve homology and thus we can conclude that this is also the
case for removal operations.

After the removal of fictive faces, each surface is simplified in its minimal form
while preserving homology (step 3 and 4 which use [2]). The last step build a
minimal representation of the initial 3D object. This is done into 3 steps:
1. each internal generator of the external surface is filled;
2. each longitudinal generator of internal surfaces is filled;
3. each internal surface is connected to the external surface.

It is shown in [6] that adding faces into each latitudinal generator cut the volume
corresponding to the external surface into a topological ball. For each internal
surface homeomorphic to a torus with g holes, each latitudinal generator (tun-
nels of internal surfaces) is filled by a face as these generators are no longer
generators when the internal surface is considered as a cavity [9]. Lastly, each
cavity is connected to the external surface and the obtained volume is minimal
as we have added the minimal number of fictive faces. Moreover, each cavity is
homeomorphic to a topological ball as each tunnel has been filled.

Direct Characterization of Homology Generators. As mentioned before,
if a 3-manifold X is bounded by j + 1 surfaces s0, ..., sj , then the set {s1, ..., sj}
is a basis of H2(X) (see [9]). This set corresponds to all non fictive internal faces.

Moreover, the set of longitudinal generators of s0 together with all the latitu-
dinal generators of all internal surfaces forms a basis of H1. Once the minimal
form of each surface has been computed (step 4 of the algorithm), all the edges
are either a longitudinal or a latitudinal generator. As seen before, all the latitu-
dinal generators of s0 and all the longitudinal generators of the internal surfaces
are incident to a fictive face. Thus homology generators of the 3D object are
all the edges that are not incident to a fictive face. Note that detecting an edge
incident to a fictive face is done in a combinatorial way, thus we do not need the
linking numbers or perturb the generators as it is done in [9].

3.4 Complexity

The complexity of Algorithm 1 is equal to O((3− χ)× n) with χ =
∑k

i=1 χi, χi

being the Euler characteristic of surface si, and n is the number of darts of the
subdivision.
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The first step is linear in number of faces of the map. Firstly, each face is
consider at most twice, a first time during the loop around all the faces of the
map, and a second time during the second loop which remove dangling faces.
When the face is reconsidered, it is removed and thus it will be never reconsidered
later.

To test the face degree, we use union-find trees [10] allowing to represent
efficiently disjointed sets. This structure is handled by two operations: find which
returns, given an element, the representative of the set, and union which allows
to merge two sets. The amortized cost of a series of m union-find operations on
n elements can be done in time O(n.α(m, n)) with α(m, n) being the inverse
Ackermann function which grows extremely slowly, and which is less than 5 in
practical cases (see [10] for the demonstration about the complexities).

We link each dart of a volume of the initial subdivision with an union-find tree
representing the volume. When we remove a face, we merge both corresponding
trees by using the union operation. The test if d and α3(d) belong to the same
volume is simply achieved by testing if find(d) is equal to find(α3(d)). Since
we only consider one 3D object, subdivided in several volumes in the initial
subdivision, we are sure that if d and α3(d) belong to the same volume, the
corresponding face is a degree one face (i.e. incident twice to the volume) and
otherwise the face is a degree two face.

The face removal is achieved locally, by running through each edge incident
to the face to remove and by modifying locally α2 involutions. Moreover, to test
if a face f is dangling or not, we have to run through each edge incident to f ,
and test if the edge is only incident to f , i.e. if d a dart of the edge is such that
α23(d) = d.

To summarize the first step, the cost of the test on the face degree can be
bounded by 5, the cost of the dangling face test is linear in number of edges of
the face, and the face removal is also achieved linearly in number of edges of the
face. This shows that the first step of Algorithm 1 is linear in number of darts
of the map (indeed, the number of darts is always greater than the number of
cells).

The second step (mark external surfaces) is also achieved linearly in number
of darts of the map. Indeed, find the smaller dart of the map need to run through
all the darts. Then, mark the surface is achieved by using for example a breadth
first search algorithm by using involutions α0, α1, and α2, and jumping over
darts of fictive faces.

The fictive faces removal is achieved linearly in number of darts of the map,
since we need to consider each dart, and modify locally involution α2 for those
that belong to fictive faces. Testing if a dart belongs to a fictive face is achieved
in constant time (if d is 3-free or not).

Compute H1 generators of a surface si is achieved in O((3−χi)×ni) where ni is
the number of darts of surface si, and χi is the Euler characteristic of the surface
(see [2]). Since we compute H1 generators for each surface, we obtain the final
complexity by adding the complexity of each surface, which gives O((3−χ)×n)
with χ =

∑k
i=1 χi and n is the number of darts of the map.
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The last step is achieved linearly in number of darts of the map since we just
run through all the edges of the map, using the mark on darts to distinguish
longitudinal and latitudinal generators, and distinguish external and internal
surfaces. Moreover, adding a face along a loop is achieved in constant time, and
adding a face between two edges that belong to two distinct surfaces is also
achieved in constant time.

This gives the global complexity of our method: O((3 − χ) × n). Indeed, all
steps are linear in number of darts, except the step which allows to compute H1

generators of each surface which depends on the number of darts multiply by
the sum of the Euler characteristics of all surfaces.

3.5 Geometry of Generators

Algorithm 1 gives a method to compute the minimal representation homologous
to a given 3D subdivision. This minimal representation allows to characterize
directly the homology generators of the object. Depending on the need of ap-
plications, it is sometime necessary to embed the generators onto the original
subdivision, for example to draw the H1 generators onto the surfaces.

This is directly possible for H2 generators since they are composed with all
the non-fictive faces of the minimal subdivision, and each non-fictive face corre-
sponds exactly to one surface into the original subdivision. This surface can be
retrieved easily by running through the original subdivision and following the
boundary (i.e. darts 3-free) and jumping over darts not 3-free.

But the problem is more complex for H1 generators. Indeed, in the last step
of Algorithm 1, fictive faces are added along one edge out of two, without partic-
ular properties on chosen edges. This is possible because all the configurations
obtained by adding fictive faces along one edge out of two are homologous. How-
ever, configurations are not equivalent if we take into account the links with the
initial subdivision. Indeed, in such a case, we need to distinguish latitudinal and
longitudinal generators since they do not have the same role for the homology
of the 3D object.

Algorithm 1 can easily be modified in order to compute a minimal subdivision
which is homologous to the original subdivision, and which take into account
these two kinds of generators. It is only necessary to make two modifications:

1. after having computed H1 generators, we determine the class (latitudinal or
longitudinal) of these generators by using the algorithm given in [9];

2. when we add fictive faces along edges, we need to chose edges which are not
H1 generators. These edges are either latitudinal generators that belong to
the external surface, or longitudinal generators that belong to an internal
surface. Since edges are distinguish by the previous modification, this mod-
ification can be directly added in the last step of Algorithm 1, by replacing
the loop “For one edge out of two e of the external surface” with “ForEach
latitudinal edge e of the external surface”, and replacing the second loop “For
one edge out of two e of s” with “ForEach longitudinal edge e of s”.

With these two basic modifications, the computed minimal subdivision is
not only homologous to the initial subdivision but H1 generators can also be
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embedded onto the initial surfaces. Note that compute this embedding is not
so straightforward than for H2 generators since we need to keep links between
edges of the minimal representation and edges of the subdivision during the
whole simplification process.

However, these modifications involve complexity modifications. Indeed, to dis-
tinguish longitudinal and latitudinal generators, we use the method given in [9]
which is in O(n2ḡ) with ḡ = max1≤i≤kgi, and gi is the genus of the surface
si. This step is thus the more expensive part of the modified method, and so
gives the global complexity of the method. One perspective of this work is to
either improve this part, or remove it by computing generators by using only
the combinatorial structure.

4 Conclusion

In this paper, we have presented an algorithm that computes the minimal gen-
eralized map homologous to a given 3D object, orientable and with or without
cavities. Thanks to this minimal form, we can characterize easily and directly the
cells that belong to homology generators. This gives a new method to compute
efficiently the generators of a 3D object.

The main interest of our approach is to use a simple method which simplify
the given subdivision. Moreover, the method is efficient since the complexity of
our algorithm is in O((3−χ)×n) with χ =

∑k
i=1 χi, where each χi is the Euler

characteristic of surface si, and where n is the number of darts of the subdivision.
We have proposed a modified version of our algorithm which allows to embed

the H1 generators onto the initial subdivision. To do that, the method given
in [9] to distinguish longitudinal and latitudinal generators is used. However,
with this additional step, the complexity of the method become in O(n2ḡ) with
ḡ = max1≤i≤kgi, and gi is the genus of the surface si.

Another main interest of our approach is that the simplification is made by de-
creasing cell dimension. This allows to reuse previous work in 2D [2]. We discon-
nect the 3D object into several 2D surfaces by removing fictive faces. After having
2D minimal representations, we insert back fictive faces in order to obtain the 3D
minimal representation. This principle can be generalized in nD, where we sim-
plify an nD object into a representation with only one n-cell, then (n− 1) fictive
cells are removed to process independently (n−1)D objects. Lastly, (n−1) fictive
cells are inserted back to obtain the minimal representation of the initial object.
However, there is a lot of work to do to validate the method. We need to show
that the homology is preserved, and show the link between the minimal represen-
tation and the homology generators. This is one perspective of this work: extend
our method to deal with nD objects. Moreover, we can also study how to consider
orientable or non-orientable objects, with or without boundaries.

Another perspective is to improve the step which allows to distinguish longi-
tudinal and latitudinal generators. Indeed, this step is necessary if we need to
keep a link between the minimal representation and the original object, but using
the method of [9] leads to increase the complexity of our algorithm. We want to
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study the possibility to compute this information directly onto the subdivision,
by using the fictive faces to characterize the different edges of the original object,
and propagate these information during the simplification steps.
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Abstract. In this paper we investigate some properties of digital seg-
ments in floor and Hausdorff discretizations. We characterize the Haus-
dorff discretization of straight lines and we prove that the frequency
of digital segment in a digital straight line is continuous and piecewise
affine function relatively to the slope. It allows to prove some combina-
torial properties of digital segments. In particular we give a new proof of
the results in [3,2,8] corresponding to the frequencies and the numbers
of digital segments of size m.

Keywords: Hausdorff discretization, cellular metric, continuous piece-
wise affine function, digital segment, frequencies of digital segment.

1 Introduction

Digital straight lines are classical objects of discrete geometries. Their properties
have been studied in a lot of papers, for recent review on the subject, see [4]. In
this paper we investigate some properties of digital segments in two frameworks
of discretization: floor discretization and Hausdorff discretization. we prove that
the frequency of digital segment in a digital straight line is continuous and piece-
wise affine function relatively to the slope. It allows to prove some combinatorial
properties of digital segments. In particular we give a new proof of the results in
[3,2,8] corresponding to the frequencies and the numbers of digital segments of
size m. This paper is organized as the following. In the second section we give
some metrical notions. In the third section we introduce the notion of Hausdorff
discretization and recall some properties of this framework of discretization. The
Hausdorff discretization is introduced and studied in series of papers [9,11,12] and
the results of the third section are proved in these papers. The last section contain
new results about Hausdorff discretization of straight lines and digital segments.

2 Some Metrical Notions

In this section, we give the metrical notions used in this paper.

Definition 1. Let (E , d) be a metric space and let E ⊆ E.
• Let p ∈ E and r ∈ R

+, Bd
r(p) = {x ∈ E | d(x, p) ≤ r}. Bd

r (p) is called the ball
of center p and of radius r relatively to the metric d.
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• int(E) = {p ∈ E | ∃r > 0, Bd
r (p) ⊂ E}, int(E) is called the interior of E.

• cl(E) is the intersection of all closed sets containing E, cl(E) is called the
closure of E.

• A metric d on R
n is said to be invariant under translation if

∀(x, y, z) ∈ (Rn)3, d(x + z, y + z) = d(x, y).

Examples: Consider E = R
n and let x = (x1, x2, ..., xn) ∈ R

n. ∀p ≥ 1, |x|p =
p
√|x1|p + ... + |xn|p and |x|∞ = max{|xi| | 1 ≤ i ≤ n} = limp→∞ |x|p are norms
over R

n. The metrics dp and d∞ induced by these norms are invariant under
translation.

2.1 Hausdorff Metric

The definitions and results presented in this subsection can be found for example
in [1].

Definition 2. Let (E , d) be a metric space, H(E) is the set of the non-empty
compact subsets of E.
On H(E), we will define a metric Hd, such that if (E , d) is a complete metric
space then (H(E), Hd) is a complete metric space.

Definition 3. Let (E , d) be a metric space.

• Let A ⊂ E and x0 ∈ E; d(x0, A) = inf{d(x0, y) | y ∈ A}.
• We define the oriented Hausdorff metric from a set A ∈ H(E) to a set B ∈
H(E) by hd(A, B) = sup{d(a, B) | a ∈ A}.

• The Hausdorff distance between two non-empty compact sets A, B ∈ H(E) is
defined by Hd(A, B) = max(hd(A, B), hd(B, A)).

Remark: Let F ′(E) be the set of non-empty closed sets of E . Then, the functions
hd and Hd can be extended in a natural way as a function from F ′(E) × F ′(E)
to R

+ ∪ {+∞}.
Hd is a ‘generalized metric’ on F ′(E) in the sense that it satisfies the axioms

of a metric, but can take infinite values.

3 Hausdorff Discretization

In this section, we study a framework of discretization of closed sets based on
Hausdorff metric. First, we present the theory of Hausdorff discretization in the
general case. In the second subsection, we characterize the Hausdorff discretiza-
tion for a subclass of metrics.

Definition 4. Let d be a metric on R
n. The covering radius of the metric d is

rc(d) = sup{d(x, Zn) | x ∈ R
n}.
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3.1 Characterization of Hausdorff Discretization

Let F be a non-empty closed subset of R
n, S ⊆ Z

n is a Hausdorff discretization
of F if it minimizes the Hausdorff distance to F . In this subsection, we study
the properties of Hausdorff discretizations.

Definition 5. Let F ∈ F ′(Rn).

• A set S ⊆ Z
n is a Hausdorff discretization of F if Hd(F, S)= inf{Hd(F, S′) |S′

⊆ Z
n}.

• MH(F ) = {S ⊆ Z
n | Hd(F, S) = inf{Hd(F, S′) | S′ ⊆ Z

n}} is the set of
Hausdorff discretizations of F in Z

n.
• ΔH(F ) = (

⋃
S∈MH(F ) S) is called the maximal Hausdorff discretization of F .

• The value rH(F ) = sup{d(x, Zn) | x ∈ F} is called the Hausdorff radius of
the closed set F for the metric d in the discrete space Z

n.

We will now characterize the Hausdorff discretization.

Theorem 1 ([12]). Let F ∈ F ′(Rn); then

• MH(F ) is non-void and if S ∈ MH(F ) then Hd(F, S) = rH(F ),
• ΔH(F ) = {p ∈ Z

n | d(p, F ) ≤ rH(F )} ∈ MH(F ),
• if (Si)i∈I is a family of members of MH(F ), then

⋃
i∈I Si ∈ MH(F ),

• if (Sn)n∈N is a decreasing sequence inMH(F ) (relatively to the set inclusion)
then

⋂
n∈N

Sn ∈MH(F ) and
• rH(F ) ≤ rc(d).

Property 1 ([12]). Let F ∈ F ′(Rn), r ∈ R
+ and let S ⊆ Z

n such that F ⊆⋃
p∈S Bd

r (p) and ∀p ∈ S, Bd
r (p) ∩ F �= ∅. Then Hd(F, S) ≤ r. So if r = rH(F )

then S ∈MH(F ).

3.2 Homogeneous Metric and Hausdorff Discretization

In this subsection we introduce the notion of a homogeneous metric. We present
some properties of a homogeneous metric, we refine the characterization of Haus-
dorff discretizations for homogeneous metric and we compare Hausdorff dis-
cretizations to other discretization schemes.

Notation
Let p ∈ Z

n,W(p) = Bd∞
1
2

(p) (i.e. W(p) is the square of size 1 centered on p).

Definition 6. A metric d over R
n is called cellular if

∀x ∈ R
n, ∀p, q ∈ Z

n, x ∈ W(p) =⇒ d(p, x) ≤ d(q, x).

In particular, if x ∈ W(p) ∩W(q), then d(p, x) = d(q, x).

All the usual metrics are cellular: dp is cellular for all p ≥ 1 and for p =∞.
Let F ∈ F ′(Rn) and M ⊆ Z

n. If ∀p ∈M, F ∩W(p) �= ∅ and F ⊆ ⋃
p∈M W(p)

then M is called a covering discretization of E. So the popular supercover dis-
cretization is the maximal covering discretization.



78 M. Tajine

Property 2. Let d be a cellular metric. If F ∈ F ′(Rn) and S is a covering dis-
cretization of F then S ∈ MH(F, ρ), in particular the supercover discretization
of F is a Hausdorff discretization of F .

Proof. If x ∈ F , then there exists s ∈ S such that x ∈ W(s) and thus, d(x, s) =
d(x,Dρ) ≤ rH(F, ρ), so hd(F, S) ≤ rH(F, ρ).

If s ∈ S, then there exists x ∈ F such that x ∈ W(s) and thus, d(x, s) =
d(x,Dρ) ≤ rH(F, ρ), so hd(S, F ) ≤ rH(F, ρ). Therefore S ∈MH(F, ρ). ��
Definition 7. • A norm N on R

n is homogeneous if ∀(x1, ..., xn) ∈ R
n, ∀(ε1,

..., εn) ∈ {−1, 1}n, for every permutation σ of {1, ..., n}, N(ε1xσ(1), ...,
εnxσ(n)) = N(x1, ..., xn). So, if n = 2, then N is homogeneous iff ∀(x1, x2) ∈
R

2, N(x1, x2) = N(−x1, x2) = N(x2, x1).
• A metric induced by a homogeneous norm is called a homogeneous metric.
• A metric d on R

2 is called strictly homogeneous if d is homogeneous and
Bd

rc(d)(0, 0) ∩ Bd
rc(d)(1, 1) = {(1

2 , 1
2 )}.

For the strictly homogeneous metrics, the balls of covering radius centered about
diagonally adjacent discrete points intersect only at their corners. For example
dp is strictly homogeneous for all p > 1 and for p =∞.

Definition 8. Let d be a metric on R
n and F ∈ F ′(Rn), the skeleton of ΔH(F )

is the set
Sk(F ) =

⋂

S∈MH(F )

S

Definition 9. Let F be a subset of R
2 and S be a square in R

2, we say that F
crosses S if ∃p, q ∈ F such that p, q belong to two distinct faces of S, the segment
[p, q] is not in a face of S and p, q belong to a same connected component of
F ∩ S (i.e. in particular p �= q, p, q ∈ (F ∩ (S \ int(S)) and [p, q] ∩ int(S) �= ∅).
Property 3. Let d be a homogeneous metric on R

2, and let F ∈ F ′(R2). If F is
connected and rH(F ) < rc(d), then

F crossesW(p) =⇒ p ∈ Sk(F )

4 Hausdorff Discretizations of Straight Lines

Let a, b ∈ N and a ≤ b. The discrete interval {a, a + 1, . . . , b − 1, b} is denoted
�a, b�. For x ∈ R, �x� (resp. 〈x〉) denotes the integral part (resp. the fractional
part) of x. So, x = �x�+ 〈x〉 with �x� ∈ Z, �x� ≤ x < �x�+ 1 and 0 ≤ 〈x〉 < 1.

Let α, β ∈ R, L(α, β) = {(x, αx + β) | x ∈ R} is the straight line of slope α
and 0-value β and D(L(α, β)) = {(x, �αx+β�) | x ∈ Z} is the floor discretization
of the straight line L(α, β).

So, D(L(α, β)) = {(x, y) ∈ Z
2 | 0 ≤ αx + β − y < 1}.

In all the following, we consider only the straight lines with slopes α ∈ [0, 1],
the other cases can be obtained by symmetries.
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Property 4. Let x, r ∈ R. Then,

�x + r� − �x� =
{ �r� if 〈x〉 < 1− 〈r〉,
�r�+ 1 otherwise

Property 5. [6] Let α be an irrational number and β ∈ R, then {〈αn+β〉 | n ∈ Z}
is dense in [0, 1].

Corollary 1. Let d be a cellular distance invariant by translation and α, β ∈ R:

1. If α is an irrational number, then {(x−�x+ 1
2�, αx+β−�αx+β+ 1

2�) | x ∈ R}
is dense in W(0, 0) and thus rH(L(α, β)) = rc(d).

2. If α is a rational number of the form p
q where p and q are coprime then

rh(L(α, β)) = max{max(d(x0(i, j), (i, j)), d(x1(i, j), (i, j)) | 0 < i < q, int
(W(i, j)) ∩ L(α, β) �= ∅} where x0(i, j) and x1(i, j) are the two intersection
points of L(α, β) with the boundary of W(i, j).

In all the following the distance d is strictly homogeneous.

Property 6. Let α, β ∈ R. Then:

1. If α = 0 and β = 1
2 + n for n ∈ Z, then Sk(L(α, β)) = ∅ and thus S ∈

MH(L(α, β)) if and only if S ⊆ ({(m, n) | m ∈ Z} ∪ {(m, n + 1) | m ∈ Z})
and for all m ∈ Z, there exists nm such that (m, nm) ∈ S.

2. Sk(L(α, β)) = {p ∈ Z
2 | int(W(p))∩L(α, β) �= ∅} and if α �= 0 or β �= n + 1

2
for n ∈ Z, then Sk(L(α, β)) ∈MH(L(α, β)),

3. Sk(L(α, β)) = {(x, y) ∈ Z
2 | − α+1

2 < αx + β − y < α+1
2 }

Definition 10. Let α, β ∈ R and r = rH(L(α, β)). OpH(L(α, β)) = {p ∈
Z

2 | Bd
r(p) ∩ L(α, β) �= ∅ and int(W(p)) ∩ L(α, β) = ∅}.

Corollary 2. Let α, β ∈ R then S ∈ MH(L(α, β)) if and only if there exists
S′ ⊆ OpH(L(α, β)) such that S = Sk(L(α, β)) ∪ S′.

So, if α �= 0 or β �= n + 1
2 for n ∈ Z, then any Hausdorff discretization of

L(α, β) contains inevitably all the points of Sk(L(α, β)) and ’optional’ points in
OpH(L(α, β)). Then in all the following, if α �= 0 or β �= n + 1

2 for n ∈ Z, then
we chose Sk(L(α, β)) as the Hausdorff discretization of L(α, β) and we chose
{(m, n) | m ∈ Z} as Hausdorff discretization of L(0, n + 1

2 ) for n ∈ Z and, in the
two cases, we denoted this choice by CH(L(α, β)).

Definition 11. Let α, β ∈ R, m ∈ N and n ∈ N
∗.

1. The segment of size m at abscissa n is the set S(m, n, α, β) = {(x, �αx +
β�) | x ∈ �n, n + m�}. The point p0 = (n, �αn + β�) is called the starting
point of the digital segment S(m, n, α, β).

The set S′(m, n, α, β) = {p − p0 | p ∈ S′(m, n, α, β)} is called a digital
segment of size m. So S(m, n, α, β) (respectively S′(m, n, α, β)) can be viewed
as function from �0, m� to Z.
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2. The segment for Hausdorff discretization of size m at abscissa n is the
set SH(m, n, α, β) = {p ∈ SH(L(α, β)) | px ∈ �n, n + m�} where p =
(px, py). The point p0 = (n, s) ∈ SH(m, n, α, β) such that s is minimal is
called the starting point of the digital segment for Hausdorff discretization
SH(m, n, α, β). The set S′

H(m, n, α, β) = {p − p0 | p ∈ S′(m, n, α, β)} is
called a H-digital segment of size m.

Notation: Consider the sequence (Bα
k )0≤k≤m as the sequence (1− 〈αk〉)0≤k≤m

reordered increasingly (notice that Bα
m = 1 − 0α = 1) and put by convention

Bα
−1 = 0.

Remarks: Let α, β ∈ [0, 1], m ∈ Z and n ∈ N
∗.

1. Let k ∈ �0, m�. Then S′(m, n, α, β)(k) = �α(n + k) + β� − �αn + β� = �αk�
if 〈αn + β〉 < 1− 〈αk〉, �αk�+ 1 otherwise.

S′(m, n, α, β) only depend on the position of the number 〈αn + β〉 rel-
atively to the elements of the increasing sequence (Bα

k )−1≤k≤m. Then, for
n1, n2 ∈ Z, S′(m, n1, α, β) = S′(m, n2, α, β) ⇐⇒ ∃i ∈ �−1, m − 1� such
that 〈αn1 + β〉, 〈αn2 + β〉 ∈ [Bα

i , Bα
i+1).

2. Let p = (px, py) be the starting point of SH(m, n, α, β) (respectively S(m, n,
α, β)). Then by considering the translation of the straight line L(α, β) by the
vector−p to obtain the straight line L(α, β′) where β′ = αpx+β−py we have
β′ ∈ (− 1

2 , 1) and S′
H(m, n, α, β) = SH(m, 0, α, β′) (respectively β′ ∈ (− 1

2 , 1)
and S′(m, n, α, β) = SH(m, 0, α, β′)) which has (0, 0) as starting point.

Definition 12. Let m ∈ N
∗. The set Fm = { p

q | 0 ≤ p ≤ q, 0 < q ≤
m and gcd(p, q) = 1 } is called the set of Farey numbers of order m. The ele-
ments of Fm are called m-Farey numbers.

For example, F4 = { 0
1 , 1

4 , 1
3 , 1

2 , 2
3 , 3

4 , 1
1}.

The m-Farey numbers have several properties, for example, if f < f ′ and
f = p

q , f ′ = p′
q′ are two consecutive m-Farey numbers then p′q−pq′ = 1, gcd(p+

p′, q + q′) = 1, q + q′ > m and p
q < p+p′

q+q′ < p′

q′ [7].

Property 7. [10] Let α, β ∈ [0, 1] and m ∈ N
∗.

1. for any i ∈ �−1, m − 1�, if Bα
i < Bα

i+1 then there exists n ∈ Z such that
〈αn + β〉 ∈ [Bα

i , Bα
i+1).

2. card({S′(m, n, α, β) | m ∈ Z}) = card({i | − 1 ≤ i < m and Bα
i < Bα

i+1}) ≤
m + 1.

3. Let p
q ∈ Fm with 0 ≤ p ≤ q and p, q are coprime, then card({S′(m, n, α, β) |

m ∈ Z}) = q.
4. If α ∈ ([0, 1] \ Fm), then all the elements of the sequence (Bα

k )−1≤k≤m are
distinct and thus card({S′(m, n, α, β) | m ∈ Z}) = m + 1.

Definition 13. Let m ∈ N
∗

• C(m, α, β) = {S′(m, n, α, β) | n ∈ Z} which correspond to the set of digital
segment of size m in D(L(α, β)).
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• Sm = {S(m, 0, α, β) | (α, β) ∈ [0, 1]2} is the set of all digital segments, of
size m. So, Sm =

⋃
α,β∈[0,1] C(m, α, β).

• Let α ∈ [0, 1], β ∈ (− 1
2 , 1), CH(m, α, β) = {S′

H(m, n, α, β) | n ∈ Z} which
correspond to the set of H-digital segment of size m in CH(L(α, β)).

• SH,m = {SH(m, 0, α, β) | (α, β) ∈ [0, 1]×(− 1
2 , 1)} is the set of all digital seg-

ments, of size m, for Hausdorff discretization. So, SH,m =
⋃

α∈[0,1],β∈(− 1
2 ,1)

CH(m, α, β).

Remark: As the sequence (Bα
k )−1≤k≤m is independent of β then Property 7

imply that C(m, α, β) is independent on β, so in the following, we use the notation
C(m, α) instead C(m, α, β).

Definition 14. Let m ∈ N
∗

• Let S ∈ Sm. Im(S) = {(α, β) ∈ [0, 1]2 | S = S(m, 0, α, β)} is called the dual
region corresponding to S.

• Let S ∈ SH,m. ImH(S) = {(α, β) ∈ [0, 1]× (− 1
2 , 1) | S = SH(m, 0, α, β)}

is called the dual region corresponding to S.

Property 8. Let S ∈ Sm (respectively S ∈ SH,m). Then Im(S) (respectively
ImH(S)) is a convex polygon of R

2.

Proof. • Let S ∈ Sm. Then Im(S) = {(α, β) ∈ [0, 1]2 | 0 ≤ αx + β − y <
1 for (x, y) ∈ S}. So ImH(S) is a convex polygon.

• Let S ∈ SH,m. Then ImH(S) = {(α, β) ∈ [0, 1] × (− 1
2 , 1) | − α+1

2 <
αx + β − y < α+1

2 for (x, y) ∈ S}. So ImH(S) is a convex polygon. ��

4.1 Frequencies of Digital Segments

Let α, β ∈ [0, 1], m ∈ Z and n ∈ N
∗.

Definition 15. The β-frequency of a digital segment S for the slopes α (denoted
freqα(S)) is the length of the interval Iα(S) = {β ∈ [0, 1] | (α, β) ∈ Im(S)}. (so
the function TP : Im(S) → R such that TP (α) = freqα(S) is the tomographic
projection of Im(S) w.r.t. the second coordinate direction).

Remark: Iα = {β ∈ [0, 1] | (α, β) ∈ Im(S)} = {β ∈ [0, 1] | 〈0α + β〉 ∈
[Bα

i , Bα
i+1)} = [Bα

i , Bα
i+1) where i ∈ �0, m − 1� and [Bα

i , Bα
i+1) is the interval

corresponding to the digital segment S.

Definition 16. The overlapping frequency of a digital segment S in the digital
line DL(α, β) is

lim
N→+∞

card({n ∈ �−N, N� |S′(m, n, α, β) = S})
(2N + 1)

if the limit exists. It is denoted overfreqα,β(S).

So, overfreqα,β(S) = limN→+∞
card({n∈�−N,N� | 〈αn+β〉∈Iα(S)})

(2N+1)
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We have the following properties:

Proposition 1. For any α ∈ [0, 1] and β ∈ R we have:

1. S ∈ C(m, α) if and only if freqα(S) > 0.
2. overfreqα,β(S) = freqα(S)

Proof. 1. If S ∈ C(m, α), then there exists n ∈ Z and β ∈ R such that S =
S′(m, n, α, β). So, 〈αn+β〉 ∈ Iα(S). Then freqα(S) = μ(Iα(S)) > 0 because
Iα(S) is a non-empty interval of the form [A, A′).

Conversely if freqα(S) > 0 then Iα(S) �= ∅. So, by Property 7, for all
β ∈ R there exists n ∈ Z such that 〈αn + β〉 ∈ Iα(S), which implies that
S ∈ C(m, α).

2. We prove now that overfreqα,β(S) = freqα(S) for any α ∈ [0, 1] and β ∈ R.
(a) Suppose first that α is rational and let β ∈ R, then α = p

q where p, q are
co-prime.

Put k0 = �γq� and β′ = β − �γq�
q . Then 0 ≤ β′ < 1

q .
As p, q are co-prime, then {〈αx+β〉 | x ∈ Z} = {β′+ i

q | i ∈ �0, q−1�}.
Let z ∈ Z and consider the set E(z) = �z, z+q−1�. Then {〈αx+β〉 | x ∈
E(z)} = {β′ + i

q | i ∈ �0, q − 1�} because p, q are co-prime. So, if i, j ∈
E(z) and i �= j then 〈αi + β〉 �= 〈αj + β〉. As for all k ∈ �−1, m − 1�,
Bα

k = Bα
k+1 or Bα

k+1 − Bα
k = 1

q , then for all k ∈ �−1, m − 1� such that
[Bα

k , Bα
k+1) �= ∅ there exists only one i ∈ E(z) such that 〈αi + β〉 ∈

[Bα
k , Bα

k+1). Let N ∈ N and put EN = �−N, N�.
Then HN = (

⋃
i∈�0,� 2N+1

q �−1� E(−N + qi))
⋃

H ′
N where H ′

N =

�−N + q(� 2N+1
q � − 1), N�. So HN is partitioned on � 2N+1

q � segments of
the form E(s) and H ′

N .
Then

card({n ∈ �−N, N� | 〈αn + β〉 ∈ Iα(S)})
(2N + 1)

=
� 2N+1

q �
2N + 1

+
k0

2N + 1

where k0 ≤ card(H ′
N ) < q.

So, overfreqα,β(S) = limN→+∞
� 2N+1

q �
2N+1 = 1

q = μ(Iα(S)) = freqα(S).
(b) Suppose now that α is irrational. By results of density of the sequences

(〈αn + ρ〉)n∈Z for an irrational number α [6], we have

overfreqα,β(S) = limN→+∞
card({i∈EN | 〈αi+β〉∈Iα(S)})

2N+1

= μ(Iα(S))

So, for all α, β ∈ [0, 1], overfreqα,β(S) = freqα(S). ��
Remarks

– The function α �→ overfreqα,β(S) does not depend on β ∈ [0, 1].
– If α = p

q , then card(C(m, α)) = q and for all S ∈ C(m, α), overfreqα,β(S) = 1
q

which does not depend on S ∈ C(m, α).
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Definition 17. A function f : R → R is called a piecewise affine function if
there exists a finite collection (Ci)i∈I of open interval and affine functions fi :
R→ R for i ∈ I, such that :

• Ci ∩ Ci′ = ∅ for i, i′ ∈ I and i �= i′,
• ⋃

i∈I Ci = R and
• The restriction of f to Ci is fi for all i ∈ I (for all i ∈ I, f(x) = fi(x) for

all x ∈ Ci).

Property 9. Let f, g : R → R be two piecewise affine functions. Then −f, f +
g, f − g, max(f, g) and min(f, g) are also piecewise affine functions.

Theorem 2. For any digital segment S, the function α �→ freqα(S) is a contin-
uous function which is piecewise affine.

Proof. Im(S) = {(α, β) ∈ R
2 | S(k) ≤ αk + β < S(k) + 1 for all k ∈ �0, m�}.

Then Iα(S) = [maxk∈�0,m�(S(k)− αk), mink∈�0,m�(S(k) + 1− αk)).
So, freqα(S) = max(0, mink∈�0,m�(S(k) + 1 − αk)−maxk∈�0,m�(S(k)− αk)).

Affine functions, max and min are continuous functions. Then α �→ freqα(S)
is a continuous function which is piecewise affine because it is composition of
continuous functions and by Property 9 it is piecewise affine function. ��
Proposition 2. Let α1, α2 ∈ [0, 1] such that α1 < α2. Suppose that the function
α �→ freqα(S) is affine on [α1, α2] for any digital segment S. Let α ∈ (α1, α2).
Then

C(m, α) = C(m, α1)
⋃
C(m, α2)

Proof. Consider λ1, λ2 > 0 such that α = λ1α1 + λ2α2 and λ1 + λ1 = 1 (λ1, λ2

are barycentric coordinates of α relatively to α1, α2). By affinity of α �→ freqα(S)
on [α1, α2] we have:

freqα(S) = λ1freqα1
(S) + λ2freqα2

(S)

If S /∈ C(m, α) then by Proposition 1, freqα(S) = 0 and so for any i, freqαi
(S) = 0

because λ1, λ2 > 0, which implies that for any i, S /∈ C(m, αi). Conversely as
λ1, λ2 > 0 and λ1 + λ2 = 1, if S ∈ C(m, α), then by Proposition 1, freqα(S) > 0
and thus, there must exist a i ∈ {1, 2} such that freqαi

(S) > 0. ��
Theorem 3. Let f, f ′ be two consecutive m-Farey numbers such that f < f ′.
Then the function α �→ freqα(S) is affine in [f, f ′] for all S ∈ Sm. Moreover
for any α, α′ ∈ [0, 1] \ Fm C(m, α) = C(m, α′) if and only if there exists two
consecutive m-Farey numbers f, f ′ such that α, α′ ∈ (f, f ′).

Proof. 1. Let i ∈ �0, m� and α, α′ ∈ (f, f ′), such that α �= α′ and k = �αi� <

k′ = �α′i�. Then α ∈ [k
i , k+1

i ) and α′ ∈ [k′
i , k′+1

i ). Which is absurd because
f, f ′ are two consecutive m-Farey numbers. So, for all i ∈ �0, m� there exists
ki ∈ N such that ki = �αi� for all α ∈ (f, f ′).

Let i, j ∈ �0, m� such that i �= j and suppose that there exists α′, α′′ ∈
(f, f ′) such that 〈α′i〉 < 〈α′j〉 and 〈α′′i〉 ≥ 〈α′′j〉. So, we have ki − α′i <
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kj−α′j and ki−α′′i ≥ kj−α′′j. Then there exists α ∈]α′, α′′] ⊂ (f, f ′) such
that ki − αi = kj − αj, which imply that α is a m-Farey number. Which is
absurd because f, f ′ are consecutive m-Farey numbers.

Let k ∈ �−1, m− 1� and S ∈ Sm. Then two cases are possibles: Iα(S) =
[Bα

k , Bα
k+1) ∩ (f, f ′) = ∅ or (f, f ′) ⊂ Iα(S). Then, in the first case we have

freqα(S) = 0 and in the second case we have for all α ∈ (f, f ′), freqα(S) =
(1 − 〈αi〉) − (1 − 〈αj〉) = ki − kj + α(i − j) where Bα

k = 1 − 〈αj〉 and
Bα

k+1 = 1− 〈αi〉 for all α ∈ (f, f ′).
2. Let α, α′ ∈ [0, 1]\Fm such that C(m, α) = C(m, α′) and suppose that there

exists f = p
q ∈ Fm such that α < f < α′ where p, q ∈ N and q ≤ m. As for

all S ∈ Sm, Im(S) is a convex polygon of R
2, then {α|(α, β) ∈ Im(S)} =

{α | freqα(S) > 0} is an interval. So, for all S ∈ C(m, α), as freqα(S) > 0
and freqα′(S) > 0 then freq p

q
(S) > 0 and thus S ∈ C(m, p

q ). Which is absurd
because card(C(m, α)) = m + 1 and card(C(m, p

q )) ≤ m. ��

Several combinatorial properties of the set of digital segments (which corresponds
to the factors of Sturmian words) [3,2,8] is a consequence of the affinity of the
function α �→ freqα(S) on [f, f ′] for all S ∈ Sm where f < f ′ are a consecutive
m-Farey numbers: Theorem 3.

Corollary 3. Let f = p
q , f ′ = p′

q′ be two consecutive m-Farey numbers such that
f < f ′. Then for any α ∈ (f, f ′), C(m, α) = C(m, f) ∪ C(m, f ′). Moreover, for
α ∈ [f, f ′],

• if S ∈ C(m, f) \ C(m, f ′), then α �→ freqα(S) = p′ − q′α,
• if S ∈ C(m, f ′) \ C(m, f), then α �→ freqα(S) = qα− p,
• if S ∈ C(m, f) ∩ C(m, f ′), then α �→ freqα(S) = (p′ − q′α) + (qα − p) =

(q − q′)α + p′ − p.

Proof. By Theorem 3, for all S ∈ Sm, the function α �→ freqα(S) is affine
on [f, f ′] and by using Proposition 2 we have, for any α ∈ (f, f ′), C(m, α) =
C(m, f) ∪ C(m, f ′).

As the function α �→ freqα(S) is affine on [f, f ′], then if α ∈ [f, f ′] then
α = λf ′+(1−λ)f with λ = qq′α−pq′ ∈ [0, 1] and thus, freqα(S) = λfreqf ′(S)+
(1− λ)freqf (S). Then

• if S ∈ C(m, f) \ C(m, f ′), then freqα(S) = λ0 + (1− λ)1
q = p′ − q′α,

• if S ∈ C(m, f ′) \ C(m, f), then freqα(S) = λ 1
q′ + (1 − λ)0 = qα− p,

• if S ∈ C(m, f)∩C(m, f ′), then freqα(S) = λ 1
q′ +(1−λ)1

q = (q−q′)α+p′−p. ��

The results of Corollary 3 are proved in [3] by using other techniques.

Property 10. Let f, f ′, f ′′ be three consecutive m-Farey numbers and α, γ such
that α < f ′ = p

q < γ < f ′′ where p, q is positive coprime numbers. Then

1. (C(m, γ) \ C(m, f ′))
⋂ C(m, α) = ∅.

2. If f < α < f ′, then card(C(m, γ) \ C(m, α)) = m− q + 1.
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Proof. By Property 8, the set Im(S) is a convex polygon of R
2. So, by Property

7 (α, β) ∈ Im(S) if and only if freqα(S) > 0. Thus, the set {α | freqα(S) >
0} = {α | (α, β) ∈ Im(S)} is a convex set of R (i.e. it is an interval) because it
is a projection of Im(S).

1. So, S ∈ C(m, α) ∩ C(m, γ) if and only if S ∈ C(m, f ′). Thus, (C(m, γ) \
C(m, f ′))

⋂ C(m, α) = ∅.
2. If f < α < f ′, then S ∈ C(m, α) ∩ C(m, γ) if and only if S ∈ C(m, f ′).

But card(C(m, f ′)) = q and card(C(m, α)) = card(C(m, γ)) = m + 1 because
f ′ = p

q , 0 ≤ p ≤ q ≤ m and α, γ ∈ ([0, 1] \ Fm).
Then card(C(m, γ) \ C(m, α)) = m− q + 1 ��

Property 11. We have three possibilities for the function α �→ freqα(S):

• If S0 is the horizontal segment, then freqα(S0) = −mα + 1 for α ∈ [0, 1
m ]

and 0 elsewhere.
• If S1 is the diagonal segment, then freqα(S1) = mα + 1−m for α ∈ [m−1

m , 1]
and 0 elsewhere.

• If S ∈ Sm \ {S0, S1}, then there exists three m-Farey numbers f ′, f, f ′′ such
that f ′ < f < f ′′, f = p

q and freqα(S) = 1
q(f−f ′) (α − f) + 1

q for α ∈ [f ′, f ]
and freqα(S) = 1

q(f−f ′′) (α− f) + 1
q for α ∈ [f, f ′′] and 0 elsewhere.

Property 11 is is illustrated in Fig. 1.

(c)(b)(a)

(0,0) 1/m f’ f"f=p/q (m−1)/m (1,0)

1/q

1 1

Fig. 1. The function α �→ freqα(S), for a digital segment S: horizontal segment (a),
diagonal segment (c), nor horizontal and nor diagonal segment (b)

Corollary 4. Let m ∈ N
∗. Then card(Sm) = 1+

∑m
i=1(m−i+1)ϕ(i) where ϕ is

the Euler’s totient function (i.e. ϕ(n) = card({i | 1 < i < n and gcd(i, n) = 1})
for n ∈ N

∗).

Corollary 4 is proved initially in [2,8]. The proof proposed here use new argu-
ments.

Corollary 5. Let m ∈ N
∗. Then card(SH,m) = m + 1(1 +

∑m
i=1 ϕ(i)).

Proof. card(SH,m) = card(Sm) +
∑m

i=1 iϕ(i). But card(Sm) = 1 +
∑m

i=1(m −
i + 1)ϕ(i). Thus, card(SH,m) = m + 1(1 +

∑m
i=1 ϕ(i)). ��
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5 Conclusion

In this paper we have proved that the frequency of a digital segment of size m
in a digital straight line is a continuous piecewise affine function in the slopes
of the straight line. This has consequences on the combinatorics of the set of
digital segment of size m, in particular its give a new proofs of several results on
the factors of Sturmian words [3,2,8]. We obtain also some properties of digital
segments for Hausdorff discretization.

A generalization, to digital plan, of some notions of this paper is studied in
[5].
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Scaling of Plane Figures That Assures

Faithful Digitization

Valentin E. Brimkov
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Abstract. In this paper we propose a method for obtaining a faithful
digitization of certain broad classes of plane figures, so that the original
continuous object and its digitization feature analogous geometric prop-
erties. The approach is based on an appropriate scaling of a given figure
so that the obtained one admits digitization satisfying some desirable
conditions. Informally speaking, we show that from certain point on, a
continuous object and its digitization are in a sense equivalent. In terms
of computational complexity, the scaling factor is easily computable. As
a corollary of the presented theory we prove the strong NP-hardness of
the problem of obtaining a polyhedron reconstruction in which the facets
are trapezoids or triangles.

Keywords: digital geometry, lattice polygon, scaling factor, polyhedral
reconstruction, NP-hard problem.

1 Introduction

Digitizing a real object in a way preserving some of its basic properties is of sig-
nificant importance for several areas of visual computing [8,13]. Independently
of the particular method used, the quality of the obtained digitization depends
on the grid resolution h, that is the inverse of the grid constant defined as the
number of grid elements per unit of distance. Obviously, if the grid resolution is
very low, e.g, if the size of the digitized object S is comparable with the one of
the grid cell, than the digitization would carry very little or no information about
S. The higher the grid resolution the better (more useful) representation of the
real object is provided by its digitization. A reasonable digitization (obtained,
e.g., by a tomography scanner) may assure conditions for a faithful reconstruc-
tion of the original real object. High grid resolution may also make possible to
compute with sufficiently high precision various properties of that real object
whose characteristics are usually unknown. A lot of work been devoted to char-
acterizing the asymptotic behavior of estimators of various properties (such as
curve length, perimeter, normal, curvature, etc.) as the grid resolution tends to
infinity (see the extensive bibliography at the end of Ch. 10 of [7] as well as [11]
for theoretical foundations). Intuitively, investigations of this kind can also indi-
cate how continuous advances in technology would impact the quality of object
analysis.

V.E. Brimkov, R.P. Barneva, H.A. Hauptman (Eds.): IWCIA 2008, LNCS 4958, pp. 87–98, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Of course, infinite grid refinement is impossible in practice. In this paper we
will show that for certain purposes it is also unnecessary. Roughly speaking,
we will demonstrate that for any plane figure S from a certain class there is a
number, called scaling factor, such that if S is magnified by that factor (that
is proportional to the squared diameter of S), the obtained (larger) figure will
admit digitization that faithfully represents the shape and some properties of
the original S.

The paper is organized as follows. Scaling of plane polygons (possibly non-
convex and possessing holes) is considered in Section 2. It is proved that the
obtained polygon is minimally enclosing, i.e., has minimal number of sides over
all possible enclosing polygons containing the same set of integer points. This
last set admits efficient reconstruction with minimal number of sides. Moreover,
it is shown that between any two minimally enclosing polygons there is a 1-to-1
correspondence, such that corresponding vertices are “close” to each other. In
Section 3 the investigation goes deep into study of scaling that preserves intrin-
sic geometric features of the object, assuring, e.g., minimal decomposition with
respect to the enclosed set of integer points. Using the obtained results, as a
bi-product it is shown in Section 3.1 that the problem of optimal reconstruction
by trapezoids of a 3D integer set is strongly NP-hard. In Section 4 the considera-
tions are extended to more general objects whose border is composed by straight
line segments and convex curves. The paper concludes with some final remarks
in Section 5. Due to space constraints, the proofs of some theorems and other
details are differed to the full length journal version of the paper.

Basic Definitions and Notations

Let S be a body in R
n, i.e., a subset of R

n of full topological dimension dim(S) =
n. Denote SZ = S ∩ Z

n. For a set A ⊆ R
n, d(A) = maxx,y∈A ||x − y|| is its

diameter where ||.|| is the Euclidean norm. By kA we denote the homothetic
image of A under a homothety with center O and a constant of proportionality
k ∈ R+. By conv(A) we denote the convex hull of A. Given two sets A, B ⊂ R

n,
ρ(A, B) = infx,y{ρ{x, y} : x ∈ A, y ∈ B} is the Euclidean distance between
them. Given a polyhedron P ⊂ R

n, the number of its i-facets is denoted by
fi(P ), 0 ≤ i ≤ n.

2 Scaling I - Preserving Geometry for Optimal Polygonal
Reconstruction

Given a simple polygon P , we want to determine an appropriate grid resolution
or, equivalently, appropriate scaling of P , i.e., a homothetic polygon Q = kP ,
k ∈ R+, that assures certain properties. In this section we pursue scaling that
satisfies the following conditions (to be formalized later).

1. The obtained polygon Q has the minimal possible number of sides over all
polygons that contain the same set M = QZ of integer points;

2. M well approximates the shape of the original polygon P .
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Fig. 1. From left to right: The first three polygons are non-minimally enclosing while
the last two are minimally enclosing for the integer points contained in them

Moreover, it will be shown that the digitization M admits efficient polygonal
reconstruction with a minimal number of sides.

Recall that the polygonal reconstruction problem is the following.1 Given a
nonempty set M ⊂ Z

2, one looks for a (possibly non-convex) polygon P , such
that the set PZ of integer points contained in P is precisely M . Such a polygon
will be called enclosing for M . An enclosing polygon with a minimal number of
sides will be called minimally enclosing for M .

Obviously, any triangle T is minimally enclosing for TZ, provided that TZ

contains at least three non-collinear points. An arbitrary polygon P is enclosing
for the set PZ but not necessarily minimally enclosing (see Fig. 1). In what
follows, we will assume that PZ encloses at least three non-collinear integer points
as w.l.o.g. the origin O is among these.

Now let P ⊂ R
2 be a polygon in R

2. Let W = {v1, v2, . . . , vm} be the set of
its vertices where vi = (vi

1, v
i
2) ∈ Z

2, 1 ≤ i ≤ m.
Let d(P ) = maxvj ,vk∈W {||vi − vj ||}, 1 ≤ j, k ≤ m be the diameter of P .
For any vi ∈ W , define ρi(P ) = minj,k �=i ρ(vi, vjvk), where vi /∈ vjvk and

vjvk is the straight line through vj and vk. Let ρ(P ) = mini ρi(P ).
Now we define a scaling element of P as

δP = max{3, d(P ), 1/ρ(P )} (1)

To technically simplify some considerations, in the rest of this section we will
assume that P is a lattice polygon, i.e., one with integer vertices. All results hold
for arbitrary polygons as well. (Note: any rational polygon can be represented
as an integer one through a proper increase of the grid resolution.)

For any lattice polygon P we have that δP ≥ 3, as the bound 3 is reached,
e.g., for a lattice unit square. We also have

Fact 1. δP can be computed with O(m log m) algebraic operations.

1 The 3D version of the problem, called polyhedral reconstruction, will be considered
in Section 3.1.
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Proof. Follows from the well-known fact that the diameter of a set of m points
can be computed with O(m log m) algebraic operations [10]. �	
We will also use the following technical fact.

Lemma 1. Given a lattice polygon P with O ∈ P , then
(a) ρ(P ) ≤ d(P ), and
(b) 1/ρ(P ) ≤ d(P ).

Proof. (a) Follows from the fact that in a right triangle the hypotenuse is longer
than each of the legs.

(b) Let d(P ) = ||u∗ − v∗|| =
√

v∗2 − u∗
2 for some points u∗, v∗ ∈ W , u∗ =

(u∗
1, u

∗
2), v∗ = (v∗1 , v∗2). It suffices to show that 1/ρ(P ) ≤ d(P ), i.e., that 1

ρ(w,uv) ≤
d(P ) for any triple of points u = (u1, u2), v = (v1, v2), w = (w1, w2) ∈ W with
w /∈ uv.

uv has equation ax1 + bx2 + c = 0, where a = v2 − u2, b = −(v1 − u1), and
c = (v1 − u1)u2 − (v2 − u2)u1. Then we consecutively obtain

ρ(w, uv) =
|aw1 + bw2 + c|√

a2 + b2
,

1/ρ(w, uv) =
√

a2 + b2

|aw1 + bw2 + c| =

√
(v2 − u2)2 + (v1 − u1)2

|(v2 − v1)w1 − (v1 − u1)w2 + (v1 − u1)u2 − (v2 − u2)u1| .

By the definition of a point set diameter, the numerator of the last expression
above is always less than or equal to d(P ). Since w /∈ uv, the denominator is
nonzero. Moreover, since u, v, and w are integer points, it is greater than or
equal to 1. Hence, 1/ρ(w, uv) ≤ d(P ), which completes the proof. �	
The first implication of the above lemma is that for lattice polygons the scaling
element δP can be written as

δP = max{3, d(P )} (2)

We have the following theorem.

Theorem 1. Let P be a lattice polygon. For any integer k ≥ 2δ2
P , the polygon

kP is minimally enclosing for (kP )Z.

Proof. Given a polygon Q, for sufficiently small real number ε > 0 one can
define an ε-extension Qε of Q as follows. To each side a of Q there corresponds
a side a′ of Qε; it lies outside Q and is a portion of a straight line la parallel
to a and at a distance ε from it. Clearly, if ε is small enough, Qε is a polygon
with the same number of vertices and sides as Q, so that there is a one-to-one
correspondence between vertices/sides of Q and Qε. See Fig. 2 (left). (Obviously,
if ε is not enough small, such a correspondence may not exist.)
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Fig. 2. Left: A polygon (in gray) and its ε-extension. Right: Illustration to the proof
of Theorem 1.

It is not hard to realize that if k ≥ 2δ2
P , then the above-mentioned correspon-

dence between kP and (kP )ε is present for ε =
√

2. In fact, since δP ≥ 3, the
following conditions hold:

All sides of kP are longer than 18 (3)

and
ρ(kP ) ≥ 6 (4)

(To obtain (4), recall that by Lemma 1 (b), d(kP )ρ(kP ) ≥ 1. Then ρ(kP ) =
kρ(P ) ≥ 2δ2

P ρ(P ) = 2δP (δP ρ(P )) ≥ 2δP (d(P )ρ(P )) ≥ 2δP ≥ 6.)
Under these conditions, for any two consecutive sides a and b of kP that in-

tersect at point M , the corresponding lines la and lb will intersect at a point
M ′ that lies outside kP and appears to be a vertex of (kP )ε. Connecting corre-
sponding vertices such as M and M ′ by segments partitions the set (kP )ε \ kP
into a set T of trapezoids (Fig. 2, left). Their number equals the one of the sides
of P and kP .

Now let P ′ be an arbitrary enclosing polygon for (kP )Z different from kP .
Consider the set of sides of P ′ that are not identical to sides of kP and are
not portions of sides of kP . Among these there must be ones that intersect
some trapezoids of the partition of (kP )ε \ kP described above. Let side u of
P ′ intersects trapezoid t1 = ABB1A1, where AB is a side of kP . Let side BC
is a side of kP that is adjacent to AB and t2 = BCC1B1 be its corresponding
trapezoid. If BC is also a side of P ′ or contains a side v of P ′ as a subsegment,
then there are at least two different sides—u and BC (resp. v)—of P ′ intersecting
the two consecutive trapezoids t1 and t2. Assume that the above condition is
not the case. We will show that nevertheless there is a side v of P ′, v �= u, that
intersects t2.

One can distinguish four cases depending on the measure of ∠ABC (resp.
∠CBA), i.e., if the latter belongs to the interval (0, π

2 , [π
2 , π), (π, 3

2π], or [32π, 2π).
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For definiteness, we will consider more in detail the last one which seems to be
the most difficult to us. All other cases can be handled by analogous arguments.

The considered angle of kP here is ∠CBA while ∠ABC is the external angle
at vertex B. With a reference to Fig. 2 (right), consider first �ABC. It may
or may not contain other vertices of kP . Next we consider the former case, the
latter being its particular case.

Let p and q be the straight lines parallel to and passing at distance 6 from
AB and BC, respectively, and intersecting at point G in the interior of ∠ABC
(Fig. 2, right). (Clearly, G is at distance at least 6 from both AB and BC.) Then
by (4), all possible vertices of kP belong to ∠pGq.

We make some subsidiary constructions. Let E ∈ AB and F ∈ BC be the
feet of the perpendiculars from G to AB and BC, respectively. Let t1 and t2 be
the trapezoids associated with AB and CD, respectively. In what follows we will
evaluate their size, or more precisely, the size of the maximal (

√
2× s)-rectangle

they may contain. For our purposes it will suffice if s ≥ √2.
It is clear that if, say, C and F are close to each other (or coincide), then, by

(3), the length of CF will be close (or equal) to 18. If C is between B and F ,
then the size of t1 will be even larger and the needed bound easily obtainable.
Therefore we consider the less trivial case when F is between B and C and the
distance between F and C is at least

√
2. Analogous hypothesis is assumed for

A, E, and B.
Let BEH ′B1 and BFH ′′B1 be the respective portions of trapezoids t1 and t2,

cut of by the perpendiculars GE and GF , and let B1I and B1J be the perpen-
diculars from B1 to BE and BF , respectively. Note that triangles �BEG and
�BFG are congruent and all corresponding considerations are symmetric. Since
∠ABC < π/2 and using (4), |BF | > |FG| > 6. Keeping this last inequalities in
mind, from the similar triangles �BJF and �B1GH ′ we consecutively obtain

|FJ |
|BF | =

|GH ′′|
|GF | >

6−√2
|GF | ,

i.e.,

|FJ | > (6−
√

2)
|BF |
|GF | > 6−

√
2.

Finally, construct a straight line l passing through point B1 and perpendicular
to BG. Let l ∩BE = L′ and l ∩BF = L′′. Consider again the side u of P ′ that
intersects the trapezoid t1 = ABB1A1. By the geometric constructions we have
that u either does not intersect any of the trapezoids L′EH ′B1 or L′′FH ′′B1, or
if it intersects one of these, it does not intersect the other. Since ∠ABC < π/2,
from the congruent right triangles �IL′B1 and �JL′′B1 we have IL′ <

√
2 and

JL′′ <
√

2. Then either L′EH ′B1 or L′′FH ′′B1 or both contain a rectangle of
size (6−2

√
2)×√2, that is larger than 3.16×√2. Then at least one of L′EH ′B1

or L′′FH ′′B1 will contain a disc of diameter
√

2. Such a disc always contains at
least one integer point in its interior or four points on its border circle. Then
this point or points must be cut off by a side v of P ′, as v �= u.
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Fig. 3. Corresponding vertices of two minimally enclosing polygons may be arbitrarily
far from each other

Thus it follows that the number of sides of P ′ is not less than the number of
trapezoids, that is the number of sides of kP . Hence, kP is minimally enclosing
for (kP )Z. �	
An integer k satisfying k ≥ 2δ2

P is called enclosure scaling factor for P . The
procedure of computing kP is called enclosure scaling of P .

Fig. 3 demonstrates that a set of integer points may admit different minimally
enclosing reconstructions that are “far” from each other in terms of distance
between corresponding vertices. The following theorem reveals the importance
of an appropriate scaling of a polygon P for assuring that (i) any other minimally
enclosing reconstruction of M is “close” to the digitized polygon P , and (ii) its
digitization M = PZ adequately approximates P .

Theorem 2. Let k be an integer with k ≥ 2δ3
P . By Theorem 1, kP is mini-

mally enclosing for (kP )Z. Let P ′ be another minimally enclosing polygon for
(kP )Z. Then there is a one-to-one correspondence between the vertices of kP
and P ′, for which there exists a positive constant c, such that a vertex v of kP
is corresponding to a vertex v′ of P ′ if and only if ||v − v′|| ≤ cδ2

P .

We conclude this section by one more remark. There are several algorithms that
decompose a digital curve into digital straight segments [4,5]. These algorithms
are straightforwardly adaptable to algorithms that linearize the border of digital
objects and thus represent them as digital polygons. Theorems 1 and 2 can imply
that the digital polygon (kP )Z has the same number of “digital sides” as kP .
The above-mentioned algorithms can also be used to efficiently obtain linear
reconstruction of (kP )Z that is minimally enclosing for (kP )Z.

3 Scaling II - Preserving Geometry for Partitioning

In this section our investigation goes deep into study of scaling that preserves
intrinsic geometric features of the object, assuring, e.g., minimal decomposition
with respect to the enclosed set of integer points. Using the obtained results, it
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Fig. 4. Two minimally enclosing polygons for the same set of points. The one on the
left is minimally decomposable while the one on the right is not.

is shown in Section 3.1 that the problem of optimal reconstruction by trapezoids
of a 3D integer set is strongly NP-hard.

Let P ⊂ R
2 be a polygon. By ν(P ) we denote the minimal number of convex

polygons (with vertices among those of P ) into which P can be decomposed.
We will say that P is minimally decomposable with respect to M = PZ if ν(P )
is minimal over all enclosing polygons for P . Fig. 4 shows that a minimally
enclosing polygon may be non-minimally decomposable.

Finding ν(P ) is a strongly NP-hard problem [9], so testing if a polygon is
minimally decomposable or not is hard, in general. The following theorem states
that any lattice polygon P can be scaled by a sufficiently large integer k, so that
the obtained polygon kP is minimally decomposable.

Theorem 3. For any integer k ≥ 2δ3
P , ν(kP ) ≤ ν(P ′) for any polygon P ′ (not

necessarily a lattice one) that is enclosing for (kP )Z.

The proof of the above theorem is based on a number of lemmas that admit
lengthy technical proofs. An integer k satisfying k ≥ 2δ3

P is called decomposition
scaling factor for P . The procedure of computing kP is called decomposition
scaling of P . We will conclude this section by showing that the results of the
last two sections can be used for studying the complexity of a 3D polyhedral
reconstruction problem.

3.1 Corollary: The Optimal Polyhedral Reconstruction by
Trapezoids Is Strongly NP-Hard

The polyhedral reconstruction problem is the 3D extension of the polygonal re-
construction considered earlier. Given a set M ⊂ Z

3, one looks for a polyhedron
P that is enclosing for M .2 An enclosing polyhedron with a minimal number of
facets is minimally enclosing for M . Usually, the 2-dimensional facets of P (2-
facets, for short) are required to be convex polygons, as two adjacent polygons
may be co-planar. Their number f2(P ) is desired to be as small as possible.
2 In practice, M is often obtained through “digitization” of some (usually unknown)

set S ⊂ R
2 of full dimension.
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The main motivation for the above problem comes from medical imaging and
other visualization problems where discrete volumes of voxels result from scan-
ning and MRI techniques. Since digital medical images involve a huge number
of points, it is quite problematic to apply traditional rendering or texture al-
gorithms to obtain satisfactory visualization. Moreover, one can face difficulties
in storing or transmitting data of that size. There are multiple sources of data
being transmitted for many diverse uses, such as telemedicine, mine detection,
tele-maintenance, ATR, visual display, cueing, and others. In all these applica-
tions the coding compression methodology used is paramount. For this, one can
try to transform a discrete data set to a polyhedron P such that the number of
its 2-facets is as small as possible. Such polyhedrizations are also searched for
the purposes of geometric approximation of surfaces as well as for surface area
and volume estimation.

It was recently shown that the optimization PR problem is strongly NP-hard
[2]. Here we show that the following special variant of PR is NP-hard as well.

Optimal Polyhedral Reconstruction by Trapezoids (OptPRT)
Instance: A set M ⊂ Z

3 and a bound β ∈ Z+.
Problem: Decide if there is a polyhedron P , such that M = PZ and with no
more than β facets that are either trapezoids or triangles, some of which may
be co-planar.

We prove that OptPRT is strongly NP-hard by exhibiting a pseudopolynomial
reduction to it from the following problem known to be strongly NP-complete
[1].

Minimal Number Trapezoidal Partition (MNTP)
Instance: A simple polygon P (given by a sequence of pairs of integer-coordinate
points in the plane) with non-rectilinear holes and a bound α ∈ Z+.
Problem: Decide if P can be decomposed into no more than α trapezoids or
triangles with vertices among those of P .

For example, the polygon in Fig. 4 (left) admits a minimal partition into four
trapezoids, while the one in Fig. 4 (right) can be partitioned into eight triangles
but does not admit partition involving trapezoids.

Note that MNTP is in P if holes are not allowed [3].
For getting acquainted with the notion of strong NP-hardness, pseudopoly-

nomial reduction, and related matters the reader is referred to [6]. Here we only
recall some basic points. Let Π = (DΠ , YΠ) and Π ′ = (DΠ′ , YΠ′ ) be decision
problems with instance sets DΠ and DΠ′ , respectively, and sets of instances with
answer “yes” YΠ and YΠ′ , respectively. Denote by Max[I], Length[I], Max′[I ′],
Length′[I ′] the maximal number and the input length of the instances I ∈ DΠ

and I ′ ∈ DΠ′ , respectively. A pseudopolynomial reduction from Π to Π ′ is a
function f : DΠ → DΠ′ such that:

(a) for all I ∈ DΠ , I ∈ YΠ iff f(I) ∈ YΠ′ ,
(b) f can be computed in time polynomial in two variables: Max[I] and

Length[I],
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Fig. 5. Left: Illustration to the proof of Theorem 4. Right: An object whose boundary
consists of convex curve and line segments. The joint point of two such segments is a
“vertex” of the object boundary.

(c) there exists a polynomial q1 such that, for all I ∈ DΠ , q1(Length′[f(I)]) ≥
Length[I],

(d) there exists a two-variable polynomial q2 such that, for all I ∈ DΠ ,
Max′[f(I)] ≤ q2(Max[I], Length[I]).

It is well-known [6] that if Π is strongly NP-hard and there is a pseudopolynomial
reduction from Π to Π ′, then Π ′ is strongly NP-hard. We now sketch a proof
of the following theorem.

Theorem 4. OptPRT is strongly NP-hard.

Proof. It is not hard to see that by Fact 1 and Lemma 1 the pseudopolynomial
reduction conditions (b),(c), and (d) are all satisfied. We show next that condi-
tion (a) is met as well, i.e., given an instance I = (X, α) of MNTP, it is possible
to construct an instance I ′ = (M, β) of OptPRT such that the solution of I ′ is
“yes” if and only if the solution of I is “yes.”

We construct a polytope P = X × τ ⊂ R
2 ×R

1, i.e., P ⊂ R
3 is the Cartesian

product of X and an interval τ = [0, t] where t is an integer constant greater
than two (see Fig. 5, left). Then let M = P ∩ Z

3. Finally, we set β = 2α + k.
The so-constructed instance I ′ = (P, 2α + k) of OptPRT has solution “yes”

iff the instance I = (X, α) of MNTP has solution “yes.” In the one direction the
proof is trivial: if the solution for I is “yes” then obviously so is the solution for I ′

since P can be decomposed into no more than 2α+k trapezoids. To demonstrate
the other direction, we have to make sure that if the set M can be represented
as M = P ′ ∩ Z

3 for some polyhedron P ′ with no more than 2α + k facets, then
X can be partitioned into no more than α trapezoids. For this, it is enough to
show that any such polyhedron P ′ �= P cannot have smaller number of convex
facets than P , which follows from theorems 1 through 3. �	
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4 Scaling of More General Objects

Consider a plane set S ⊂ R
2 whose border bd(S) consists of straight line segments

and smooth strictly convex curve segments (line segments and curve segments,
for short). A common point of two adjacent curve/line segments will be called a
vertex of bd(S). See Fig. 5 (right).

In addition to the scaling conditions for polygons that here apply to the line
segments of S, we introduce the following. Given the set S, define a number γS

(depending on S) as follows.
Let

γS
1 = max

u,s
{ρ(u, s)}

where u denotes an arbitrary vertex and s an arbitrary curve/line segment of
bd(S). Let

γS
2 = max

s1,s2
{ρ(s1, s2)}

where s1, s2 are arbitrary curve/line segments of bd(S). Finally, let γS
3 be the

minimal number for which
r(γS

3 s) ≥ 3

for all curve segments s of bd(S), where r(s) is the minimal radius of curvature
of s over all points of s. Then we set a scaling factor for S to be equal to

γS = max{δS, γS
1 , γS

2 , γS
3 , 3}

Similar to the case of polygons, it can be shown that scaling by an integer k,
that is a suitable low-degree polynomial of γS , assures a digitization (kS)Z of
kS that adequately approximates the shape of the original set S.

5 Concluding Remarks

In this paper we proposed scaling of plane figures (polygons or ones having curve
segments) that leads to obtaining faithful digitizations. The scaling factors δP

is efficiently computable. Computation issues regarding γS will be considered in
a future work.

Clearly, both δP and γS are not necessarily the minimal possible factors that
assure the properties stated in theorems 1,2, and 3. An open problem is to study
the computational complexity of finding these minima.

Another interesting problem is the following. Given a polygon P , decide if it
is minimally enclosing and/or whether it admits minimal decomposition with
respect to PZ.

One can also look for other scaling procedures that assure digitizations pre-
serving other desirable geometric properties of real objects.
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Abstract. Rotations in the discrete plane are important for many ap-
plications such as image matching or construction of mosaic images. In
this paper, we propose a method for estimating a rotation angle such
that the rotation transforms a digital image A into another digital image
B. In the discrete plane, there are many angles that can give the rotation
from A to B, called admissible angles for the rotation from A to B. For
such a set of admissible angles, there exist two angles α1, α2 that are its
upper and lower bounds. To find those upper and lower bounds, we use
hinge angles as used in Nouvel and Rémila [5]. Hinge angles are partic-
ular angles determined by a digital image, such that any angle between
two consecutive hinge angles gives the identical digital image after the
rotation with the angle. Our proposed method obtains the upper and
lower bounds of hinge angles from a given Euclidean angle and from a
pair of digital images.

1 Introduction

Rotations in the discrete plane are required in many applications for image
computation such as image matching or construction of mosaic images [4]. For
the moment, the method to estimate the rotation angle is to approximate the
rotation matrix by minimizing errors [4]. In the continuous plane, the Euclidean
rotation is well defined and possesses the property of bijectivity. This implies
that for two angles γ1, γ2 and a set of points A, if the Euclidean rotation of
angle γ1 applied to A gives the same result as the Euclidean rotation of angle
γ2 applied to A, then we have γ1 = γ2.

In the discrete plane, however, the property of bijectvity does not hold. To
understand this reason, we have to first define the discretized Euclidean rota-
tion, abbreviated to DER hereafter. DER is the discretization of the Euclidean
rotation, namely, the application of the rounding function after applying the
rotation matrix to a set of points. Thus two points in the Euclidean plane may
give the same point in the discrete plane after the discretization. Because of
this reason, two angles γ1, γ2 give the same result for a set of points A even if
γ1 �= γ2. In other words, we can define the admissible rotation angles S such
that any angle in S gives the same rotation result for a set of points A. Note

V.E. Brimkov, R.P. Barneva, H.A. Hauptman (Eds.): IWCIA 2008, LNCS 4958, pp. 99–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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that S depends on A. Another way to define the admissible rotation angles is for
two corresponding sets of points A and B, where B is the rotation of A by an
unknown angle, to find the set S of angles which transforms A into B. The two
most interesting angles in S are the upper and the lower bounds because with
only these two angles we can deduce the other angles in S. Therefore, the aim
of this paper is to find these two angles from a given rotation angle or from two
given corresponding sets of grid points. Because we identify the exact bounds,
we have to avoid computation with real numbers. Thus, in this paper, we only
work with discrete geometry tools which guarantee to avoid computation errors.
Moreover, because we assume that our data are discretized from continuous im-
ages of an object, the discrete rotation between two different sets of points has
to give the same result as DER.

Some work on discrete rotations already exists. The first discrete rotation is
the CORDIC algorithm [6]. Estimation of the rotation angle is done by addition
or subtraction using pre-computed values to achieve the needed precision. It
gives almost the same result as DER but an approximation of the angle. Andres
described in [1],[2] some discrete rotations such as the rotation by discrete circles,
the rotation by Pythagorean lines or the quasi-shear rotation. Computation done
during these rotations are exact, but they are bijective. Thus they cannot give
the same results as DER.

On the other hand, Nouvel and Rémila proposed in [5] another discrete rota-
tion based on hinge angles which gives the same results as DER. It is known that
hinge angles are particular angles determined by a digital image, such that any
angle between two consecutive hinge angles gives the identical rotated digital
image. This means that hinge angles correspond to the discontinuity of DER.
Nouvel and Rémila showed that each hinge angle is represented by an integer
triplet, so that any discrete rotation of a digital image is realized only with inte-
ger calculation. Because their algorithm gives the same results as DER, we see
that hinge angles represented by integer triplets give sufficient information for
executing any digital image rotation.

In this paper, we propose a discrete method for finding the lower and upper
bounds of admissible rotation angles. Our method uses hinge angles, because we
can obtain the same result as DER and they allow exact computations. The input
data of our method is two sets of points A and B, where point correspondences
across the two sets are known. The output of the algorithm is two hinge angles
that give the lower and upper bounds of the admissible rotation angles for A
and B.

In the following of this paper, we first introduce the notion of hinge angles
and their properties. Then, we show how to obtain such a hinge angle from a
given angle so that we can efficiently obtain a rotated digital image from the
integer triplet. We then present a method for obtaining from a pair of digital
images, two hinge angles which constitute the upper and lower bounds of the
admissible rotation angles from the pair of digital images.



Computing Admissible Rotation Angles from Rotated Digital Images 101

2 Hinge Angles

Let us consider points of �2 as centers of pixels and rotate them such that the
rotation center has integer coordinates. Hinge angles are particular angles which
make some points of �2 rotated to points on the frontier between adjacent pixels.
In this section, we give the definition of hinge angles and their properties related
to Pythagorean angles.

2.1 Definition of Hinge Angles

Let x be a point in �2 such that x = (x, y). We say that x has a semi-integer
coordinate if x − 1

2 ∈ � or y − 1
2 ∈ �. The set of points each of which has

a semi-integer coordinate is denoted by H , and is called the half grid. Thus,
H represents the set of points on the frontiers of all pixels whose centroids are
points in �2.

Definition 1. An angle α is called a hinge angle if at least one grid point in �2

exists such that its image by the Euclidean rotation with α belongs to H .

Because H can be seen as the discontinuity of the rounding functions, hinge
angles can be regarded as the discontinuity of the discretized Euclidean rotation.
More simply, hinge angles determine a transit of a grid point from a pixel to its
adjacent pixel during the rotation.

The following proposition is important because it shows that we can represent
every hinge angle with three integers.

Proposition 1. An angle α is a hinge angle if there is an integer triple (P, Q, K)
such that

2Q cosα + 2P sin α = 2K + 1. (1)

The proof is given in [5].
Geometrically, a hinge angle α is formed by two rays that go through (P, Q)

and a half-grid point such as (K + 1
2 , λ) respectively sharing the origin as their

endpoints as shown in Figure 1 (left). From this proposition, all calculations
related to hinge angles can be done only with integers. Hereafter, α indicates a
hinge angle.

We denote by α(P, Q, K) the hinge angle generated by an integer triple

(P, Q, K). Setting λ =
√

P 2 + Q2 − (K + 1
2 )2, the following equations can be

easily derived from (1) and Figure 1 (left).

cosα =
Pλ + Q(K + 1

2 )
P 2 + Q2

, sin α =
P (K + 1

2 )−Qλ

P 2 + Q2
. (2)

Note that we can have a half grid point (λ, K + 1
2 ) instead of (K + 1

2 , λ). In such
a case, the above equations become

cosα =
Qλ + P (K + 1

2 )
P 2 + Q2

, sin α =
Pλ−Q(K + 1

2 )
P 2 + Q2

. (3)
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Fig. 1. A hinge angle α(P, Q,K) (left) and four symmetrical hinge angles (right)

The symmetries on hinge angles are important, because it allows us to restrict
rotations in the first quadrant of the circle such that α ∈ [0, π

2 ].

Corollary 1. Each triple (P, Q, K) corresponds to four symmetrical hinge an-
gles such as α + πk

2 where k = 0, 1, 2, 3.

Figure 1(right) gives an example of Corollary 1. In order to distinguish the case
(K + 1

2 , λ) from the case (λ, K + 1
2 ), we change the sign of K; we use α(P, Q, K)

for the case of (K + 1
2 , λ), and α(P, Q,−K) for the case of (λ, K + 1

2 ). Note that
the symmetries allow us to restrict α to the range [0, π

2 ]. Thus we know that K
is always positive.

2.2 Properties Related to Pythagorean Angle

Because hinge angles are strongly related to Pythagorean angles, properties of
Pythagorean angles are needed to prove some properties of hinge angles. Thus,
we first give the definition of Pythagorean angles and their properties.

Definition 2. An angle θ is called Pythagorean if both its cosine and sine belong
to the set of rational numbers �.

We can deduce from Definition 2 that each Pythagorean angle θ is defined by
an integer triplet (a, b, c) such that

cos θ =
a

c
, sin θ =

b

c
. (4)

In the following, θ indicates a Pythagorean angle. The following lemma is needed
for the proof of the next proposition.

Lemma 1. Let (a, b, c) be an integer triplet generating a Pythagorean angle with
| a |<| b |<| c |. If gcd(a, b, c) = 1, then c is odd.
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Proof. We assume that c is even such that c = 2d where d in �. Then we
obtain a and b are both odd because of a2 + b2 = c2 = (2d)2. Otherwise, we
would have gcd(a, b, c) = 2n for n ∈ �. Setting a = 2e + 1 and b = 2f + 1
where e, f ∈ �, we obtain (2e + 1)2 + (2f + 1)2 = 4d2, which can be rewritten
by e2 + e + f2 + f + 1

2 = d2. This indicates that d does not belong to Z. We
therefore conclude that c is odd.

If gcd(a, b, c) = i, then gcd(a
i , b

i ,
c
i ) = 1 and the triple of integers (a

i , b
i ,

c
i )

generates the same Pythagorean angle as (a, b, c).

Proposition 2. Let Eh be the set of hinge angles and Ep be the set of
Pythagorean angles. Then we have Eh

⋂
Ep = ∅.

Proof. Assume that there exists an angle α such that α ∈ Eh and α ∈ Ep.
Since α in Ep, we can find an integer triplet (a, b, c), generating α such that
gcd(a, b, c) = 1. By substitution of (4) in (2), we obtain

2
Qa + Pb

c
= 2K + 1, (5)

from which we derive 2Qa+Pb
c ∈ �. Because we know that c is odd according to

Lemma 1, we obtain Qa+Pb
c ∈ �. However, this contradicts the fact that for any

pair n, m in �, we never have 2n = 2m + 1. Therefore α cannot belong to both
Eh and Ep simultaneously.

This proposition shows that it is not possible to rotate from a point (i, j) in
�2 to a point (x, y) such as x = i + 1

2 , y = j + 1
2 , where (i, j) ∈ �2, if the angle

of the rotation is a hinge angle.

3 Computing the Lower Bound Hinge Angle from a
Pythagorean Angle

In this section, we propose a method for computing a lower bound hinge angle
α1 from a given angle for rotating a given digital image. Note that with minor
modifications, this method can also find the upper bound hinge angle α2, and
thus, by applying twice this method, we can obtain two hinge angles that enclose
the given angle. The set S of angles γ such that α1 ≤ γ ≤ α2 is called admissible
rotation angles, denoted by ARA. All rotations of the given digital image done
by an angle in S give the same result. Nouvel and Rémila presented a method
to compute all possible hinge angles for a grid point or a pixel in a digital image
[5]. Their method can be used for finding our interesting hinge angle which is the
lower bound of the admissible rotation angles. Its time complexity is O(n log(n))
where n is the number of all hinge angles for a given grid point. Note that n
depends on the coordinates of the grid point. In subsection 3.1, we improve their
method by using a tree structure for hinge angles, so that our method brings
the complexity O(log(n)). In subsection 3.2, we present a method for finding the
lower bound hinge angle for a given digital image, namely, for all pixels in the
image.
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3.1 Computing the Lower Bound Hinge Angle for a Grid Point

For each grid point p = (P, Q) in �2, there are less than n = �
√

P 2 + Q2 +
1
2� different hinge angles [5]. This means that we have a sequence of Ki, i =
0, 1, .., n − 1 in �, where 0 ≤ Ki < n for each p. Because we can compare
any pair of associated hinge angles αi(P, Q, Ki), we obtain a totally ordered set
{α1(P, Q, K1), α2(P, Q, K2), ..., αmax(P, Q, Kmax)} in the ascending order such
that α1 < α2 < ... < αmax. Given a Pythagorean angle θ, in order to find the
lower bound hinge angle αi such that αi < θ < αi+1, we use a tree structure.
Binary search allows us to find αi in O(log(n)), providing that we can compare
a hinge angle with a Pythagorean angle in a constant time. The algorithm is
described in Figure 2.

Function: Find a hinge angle
Input (Point p(P, Q), Pythagorean angle θ)
Output (α(P, Q, K))
var Kmax = �

√
P 2 + Q2 − 1�;

var Kmin = 0;
var K = �Kmax+Kmin

2
�;

While (Kmax − Kmin �= 1)
if (α(P, Q, K) > θ)

Kmax = K;
else

Kmin = K;
K = �Kmax+Kmin

2
�;

end while
return α(P, Q, K);

Fig. 2. Function for finding a hinge angle

The following proposition shows that the comparison between a hinge angle
and a Pythagorean angle is executed in a constant time.

Proposition 3. Let α be a hinge angle and θ be a Pythagorean angle. We can
check whether α > θ in a constant time with integer calculation.

Proof. Let α(P, Q, K) be a hinge angle in [0, π
2 ] and θ(a, b, c) be a Pythagorean

angle in [0, π
2 ]. From (2) and (4), we obtain

cosα− cos θ =
P (K + 1

2 ) + Qλ

P 2 + Q2
− a

c
.

If θ is greater than α, cosα− cos θ > 0. Thus

cP (2K + 1)− 2a(P 2 + Q2) > −2cQλ. (6)

Since we know that c, Q, λ are positive, the right-hand side of (6) is always
negative. Thus, if the left-hand side of (6) is not negative, then θ > α. Otherwise,
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we take squares of (6), so that we only have to check whether the following
inequality holds:

[
cP (2K + 1)− 2a(P 2 + Q2)

]2
< 4c2Q2λ2. (7)

Note that because λ =
√

P 2 + Q2 − (K + 1
2 )2, we see that 4λ2 in the right-hand

side of (7) contains only integer values. Therefore, we can also verify (7) with
integer calculation. If it is true, θ > α; otherwise α > θ. Note that because of
Proposition 2, it is impossible to obtain θ = α.

We mention the importance of the rotation with angle π
2 and its multiples. In

fact, if the angle of a rotation is equal to π
2 , π, 3π

2 , we just have to flip x and/or
y-coordinates by changing their signs. It gives the reason that we can restrict
the input angle θ to 0 < θ < π

2 .

3.2 Computing the Lower Bound Hinge Angle for a Set of Points

In this subsection, we present an algorithm, based on the previous one, for com-
puting the lower bound hinge angle from a given Pythagorean angle θ for a
digital image consisting of m grid points such that A = {p1, p2, ..., pm}. The
output is a triplet of integers that represents a hinge angle. The algorithm com-
putes all hinge angles for all points in A, and sorts them to keep the largest one.
More precisely, we first compute the lower bound hinge angle for the first point
of A, and store it as the reference. Then, we compute the hinge angle for the
second point in A and compare it with the reference to keep the larger one. Af-
ter repeating this procedure for all points in A, our algorithm returns the lower
bound hinge angle α such that α < θ. The time complexity of this algorithm is
O(m log(n)) because we call m times the function of binary search (Figure 2)
whose time complexity is O(log(n)). Figure 3 illustrates our algorithm. As shown
in the following proposition, the comparison between two hinge angles is realized
in a constant time, so that it does not change the global complexity.

Proposition 4. Let α1, α2 be two hinge angles. We can check if α1 > α2 in a
constant time and with full integer calculation.

The proof is similar to that of Proposition 3.
Note that our input is a Pythagorean angle, as the one in [5], in this paper.

However, we can replace it by an Euclidean angle because there exists a method
in linear time complexity O(m) to approximate a given Euclidean angle with a
Pythagorean angle with a precision of 1

10m [3].

4 Digital Image Rotation by a Hinge Angle

In this section, we present an algorithm for rotating a digital image with a
given lower bound hinge angle, which is obtained by the algorithm described in
Subsection 3.2. It is already proved in [5] that we can obtain the same result as
the DER with respect to the original angle. Note that our input is a hinge angle
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Function: Find hinge angle for a digital image
Input (Digital image A, Pythagorean angle θ)
Output (hinge angle)
var HA,HAtemps \* hinge angle *\;
HA = Find hinge angle(first point of A, angle

of rotation);
for each p ∈ A\{p1}

HAtemps = Find hinge angle(p, θ);
if (HA < HAtemps) HA = HAtemps;

end for
Return (HA);

Fig. 3. Function for finding the lower bound hinge angle for a digital image

Function: Discrete rotation
Input (a digital image A, a hinge angle α)
Output (Rotated image A′)
var HA : hinge angle;
for each p ∈ A

HA = Find hinge angle(p, α);
move p to (K, �λ + 1

2
, �) or (�λ + 1

2
�, K),

depending on the sign of K and put it to A′ ;
end for
Return (A′);

Fig. 4. Discrete rotation algorithm by a hinge angle

and the input of the algorithm presented in Figure 2 is a Pythagorean angle. In
spite of this difference, we can apply the same algorithm thanks to Proposition
4. The algorithm is presented in Figure 4. It supposes that the center of rotation
is the origin. For each point, it calls the function of binary search (Figure 2)
to find the corresponding hinge angle, which designates its new position. If we
consider n as the biggest coordinate of all points in A, we can assume that there
are less than 4n2 points in A. Thus we can conclude that the complexity of our
algorithm is O(n2 log(n)). The first advantage of our method is that it does not
require any float number calculation. The second advantage is that the exact
rotation of the digital image is obtained with only an integer triplet. We need
neither matrices nor angles for realizing the rotation.

5 Obtaining Admissible Rotation Angles from Two
Digital Images

Let us assume that a set of grid points in the first image and its corresponding
set in the second image are given: A = {p1, p2, ..., pl} and B = {q1, q2, ..., ql} are
given where pi corresponds to qi. Given A and B, we obtain a hinge angle pair
α1, α2, such that α1 ≤ γ < α2 where γ is an admissible rotation angle consistent
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with the point correspondences between A and B. Hereafter, we assume that A
is the original point set and B is the rotated point set by angle γ. In this section,
we show how to obtain the ARA from these two digital images.

To simplify the notation, we denote by ARA(pi, qi) = (αi1, αi2) the pair
of angles, which gives the lower and the upper bounds of possible angles of
the rotation for the pair of points (pi, qi). Note that the angles αi1, αi2 are
hinge angles. ARA(An+1, Bn+1) denotes the two most restrictive angles for
all point i such as i ≤ n + 1. We formally define it by ARA(An+1, Bn+1) =
ARA(An, Bn)

⋂
ARA(pn+1, qn+1).

5.1 Setting Rotation Centers

For any rotation, we need to set a rotation center. In this paper, we choose one
of the grid points in a digital image for the rotation center. Assuming centers
are p1 and q1 for A and B respectively, we define two functions TA and TB such
that

TA(pi) = pi − p1,

TB(qi) = qi − q1,

for all pi ∈ A, qi ∈ B, so that we can consider the rotation centers to be the
origin after the translations. Hereafter, we will use new sets of points A′ =
{TA(p1), TA(p2), ..., TA(pl)} and B′ = {TB(q1), TB(q2), ..., TB(ql)} instead of
A and B. However, for simplicity, we will denote them by A = {p1, p2, ..., pl}
and B = {q1, q2, ..., ql}.

5.2 Computing Hinge Angles from Two Corresponding Point Pairs

In this subsection, we consider the case with A = {p1, p2} and B = {q1, q2}
where pi = (Pi, Qi) and qi = (Ri, Si). Let us first define a circle C (p2) with
center p1 that goes through p2. Thus the radius of C (p2) is r = d(p1, p2) where
d(p1, p2) is the Euclidean distance between p1 and p2. Let us consider the half
grid around q2 such that

H (q2) = {(x, y) ∈H : S2 − 1
2
≤ y ≤ S2 +

1
2

when x = R2 + 1
2 ,

R2 − 1
2
≤ x ≤ R2 +

1
2

when y = S2 + 1
2}.

Setting p1 and q1 to be the rotation centers, for finding a hinge angle pair,
we need to detect intersections between C (p2) and H (q2). In other words, we
study corners of H (q2) in the interior of C (p2). Setting four corners of H (q2)
such that C1(q2) = (R2 − 1

2 , S2 − 1
2 ), C2(q2) = (R2 − 1

2 , S2 + 1
2 ), C3(q2) =

(R2 + 1
2 , S2 + 1

2 ), C4(q2) = (R2 + 1
2 , S2 − 1

2 ) as shown in Figure 5, we define a
binary function F such as

F (Ci(q2)) =

{
0 if Ci(q2) is outside of C (p2),
1 otherwise.
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Fig. 5. The half grid H (q), namely a pixel around q and its four corners

In order to obtain F (Ci(q2)) with integer calculation, we compare each of
4((R2 ± 1

2 )2 + (S2 ± 1
2 )2) with 4r2. Note that we may assume that the inter-

section between C (p2) and H (q2) is not null. If no intersection between C (p2)
and H (q2) exists, then p2 and q2 are not corresponding.

Proposition 5. If two points p2 and q2 are corresponding, a circle C (p2) and
a pixel boundary H (q2) always have two distinct intersections.

The mathematically rigorous proof is omitted in this paper because of the page
limitation. The proof is accomplished by distinguishing the following two cases;
in the other cases, we have always two intersections.

The first case is that C (p2) goes through one of the four corners of H (q2).
Because any angle between p2 and Ci(q2) at the origin is a Pythagorean angle
it cannot be a hinge angle from Proposition 2. Thus, this case never happens.

The second case is that C (p2) and H (q2) have the unique intersection on
one of edges of H (q2). This case may happen only when one coordinate of q2

is zero. A circle centered at the origin can cross twice a half grid parallel to one
of the axes if and only if the circle arc between those intersections cuts another
axis. Therefore, if the intersection is single, it should be on an axis, so that λ
should be null. However, it is impossible by the definition of hinge angles.

From Proposition 5, we always have two intersections between C (p2) and
H (q2), and see that there are four cases corresponding to different possibilities
to have 0,1,2 or 3 corners in the interior of C (p2), as illustrated in Figure 6.

– Case A: C (p2) includes no corner. Thus we have F (Ci(q2)) = 0 for all
i = 1, 2, 3, 4, similarly to the above second impossible case. This case can
only happen when R2 = 0 or S2 = 0. Supposing that R2 and S2 are not null,
we assume that they are positive. In the first quadrant, the y-coordinate
(respectively x-coordinate) of points in C (p2) is strictly decreasing with
respect to x (respectively y). Thus it cannot intersect twice a line parallel
to the x-axis (respectively y-axis). Therefore, if S2 = 0, ARA(p2, q2) =
(α21(P2, Q2, R2 − 1), α22(P2, Q2, R2 − 1)). In this case the two hinge angles
are symmetrical with respect to the y-axis.

– Case B: C (p2) includes only one corner. For example, if C1(q2) is in the
circle, we obtain ARA(p2, q2) = (α21(P2, Q2, R2 − 1), α22(P2, Q2,−S2 + 1)).

– Case C: C (p2) includes two corners that should have one common coor-
dinate. For example, if C1(q2) and C2(q2) are in the circle, we obtain
ARA(p2, q2) = (α21(P2, Q2,−S2 + 1), α22(P2, Q2,−S2)).
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Fig. 6. Illustration of cases A,B,C and D

– Case D: C (p2) includes three corners. For example, if C1(q2), C2(q2) and
C4(q2) are in C (q2), then we obtain ARA(p2, q2) = (α21(P2, Q2, R2), α22

(P2, Q2,−S2)).

The main function of our algorithm for finding the two hinge angles consist
of three steps. The first step sets the rotation center at p1 and q1, as described
in the previous subsection. The second step computes which corners are in the
interior of C (q2) and then stocks the result as an index. The index is calculated
by index =

∑
i 2i ×F (Ci(q2)). Therefore we can easily identify which corners

are in the interior of C (p2) from the index. The third step calls a function that
returns hinge angles corresponding to the index. There exist fourteen possible
values for the index. Note that geometrically the index can be neither 5 nor
10. The index value 15 implies an error such that all corners are in the interior
of C (q2). Since the index value 0 corresponds to the case A, we should verify
whether H (q2) really intersects with C (q2). Note that for all other index values,
we can make a pair (d, e) such that d + e = 15. The two indices of such a pair
design the same pair of hinge angles. Each step of this algorithm has the constant
time complexity. Thus the global complexity of this algorithm is also O(1).

5.3 Incremental Hinge Angle Computing

In general, the corresponding point sets contain more than two points. Therefore,
in this section, we extend our algorithm in the previous section to two sets of
corresponding point pairs, A and B, each of which has l points where l > 2.
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Fig. 7. Running of the incremental algorithm

A new algorithm handles all points incrementally. This algorithm is divided
into two parts. The first part is to initialize the algorithm by computing ARA
(p2, q2). Note that ARA(p1, q1) cannot be computed because p1 and q1 are
the centers of the rotation. The second part computes ARA(Ai+1, Bi+1) for
i = 2, . . . , n−1. The time complexity of this algorithm is O(l). As explained in the
previous subsection, the function is realized in a constant time O(1). Moreover,
as explained in Section 3, we can compare two hinge angles in a constant time
O(1). Therefore, the full computation of this algorithm for l points takes the
time complexity of l × (O(1) + O(1)) = O(l).

5.4 Example of the Running of the Algorithm

Figure 7 gives an example of the incremental algorithm for two sets of three
points. Given input data of the algorithm as shown in Figure 7 (A), we first
obtain the result of the translation described in subsection 5.1 as illustrated in
(B). We then compare, for each pair of points (pi, qi) with i ≥ 2, the distance
of pi from the origin with the distance of each corner from H (qi) to deduce the
corresponding hinge angle as explained in subsection 5.2. Finally, we obtain (D)
which shows the intersection of all ARA(pi, qi) obtained in (C).
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6 Conclusion

In this paper, we have shown how to obtain a hinge angle which is the lower
bound approximation to a given Euclidean angle. We have also shown that we
can efficiently obtain a rotated digital image from the integer triplet identically to
that from the Pythagorean angle. We then have presented a method for obtaining
the upper and lower bounds of the ARA from a pair of digital images.

The future work will extend our proposed method into two directions. The
first direction is to extend this algorithm to the 3D case. The second direction
is to create a 2D matching algorithm based on hinge angles. Current methods
for matching can be improved by restricting the searching area. The admissible
rotation angles obtained by our method will be useful for the restriction of the
searching area.
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Abstract. One of the basic problems in discrete tomography is the re-
construction of discrete sets from few projections. Assuming that the set
to be reconstructed fulfills some geometrical properties is a commonly
used technique to reduce the number of possibly many different solutions
of the same reconstruction problem. The class of hv-convex discrete sets
and its subclasses have a well-developed theory. Several reconstruction
algorithms as well as some complexity results are known for those classes.
The key to achieve polynomial-time reconstruction of an hv-convex dis-
crete set is to have the additional assumption that the set is connected
as well. This paper collects several statistics on hv-convex discrete sets,
which are of great importance in the analysis of algorithms for recon-
structing such kind of discrete sets.

Keywords: discrete tomography, hv-convex discrete set, connectedness,
analysis of algorithms.

1 Introduction

Discrete tomography (DT) [15,16] aims to reconstruct a discrete set (a finite
subset of the two-dimensional integer lattice defined up to translation) from the
number of its elements lying on the same line along several (usually horizontal,
vertical, diagonal, and antidiagonal) directions, called projections. It has several
applications in pattern recognition, image processing, electron microscopy, an-
giography, non-destructive testing, and so on. The main challenge in DT is that
practical limitations every time reduce the number of available projections to at
most about four – which results in a possibly extremely large number of solu-
tions of the same reconstruction task. This can cause the reconstructed discrete
set to be quite different from the original one. In addition, the reconstruction
problem can be NP-hard, depending on the number and directions of the pro-
jections. One way of eliminating these problems is to suppose that the set to be
reconstructed has some geometrical properties. In this way we can reduce the
search space of the possible solutions and we can achieve fast and rare ambiguous
reconstructions.
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The class of hv-convex discrete sets and its subclasses are very frequently
studied in DT. The reconstruction in those classes has a well-developed theory
including heuristic and exact reconstruction algorithms as well as some impor-
tant complexity results. It turned out, that the key to achieve polynomial-time
reconstruction of an hv-convex discrete set is to have the additional assumption
that the set is connected as well.

In this paper we describe a method for counting elements of several sub-
classes of the hv-convex class. The paper is structured as follows. First, the nec-
essary definitions are introduced in Section 2. In Section 3 we describe recursive
formulas for counting hv-convex discrete sets, possibly with certain additional
properties. After that, in Section 4 we collect some statistics that can affect
the complexity of several reconstruction algorithms developed for the hv-convex
class. Section 5 is for the conclusion.

2 Definitions

The finite subsets of the 2D integer lattice are called discrete sets. The size of a
discrete set is defined by the size of its minimal bounding discrete rectangle (i.e.
not the number of its elements). A discrete set F of size m×n is defined up to a
translation and it is usually represented by a binary picture formed from unitary
cells (see Fig. 1). We refer to the topmost row of the discrete set as the first row,
and to the leftmost column of the set as the first column. Thus, the upper left
corner of the minimal bounding rectangle of a discrete set is always the (1, 1)
position, and the remaining positions of the minimal bounding rectangle (and
of the discrete set as well) are addressed consequently.

A discrete set F is 4-connected (8-connected), if for any two positions P ∈ F
and Q ∈ F of the set there exist a sequence of distinct positions (i0, j0) =
P, . . . , (ik, jk) = Q such that (il, jl) ∈ F and |il − il+1| + |jl − jl+1| = 1
(max{|il − il+1|, |jl − jl+1|} = 1) for each l = 0, . . . , k − 1 (see Figs. 2a and 2b).
The 4-connected sets are also called polyominoes [14]. If the discrete set is not 4-
connected then it consists of several polyominoes. The maximal 4-connected sub-
sets of a discrete set F are called the components of F. For, example the discrete
set in Fig. 1 has three components: {(1, 4), (2, 4)}, {(2, 2), (3, 2), (4, 1), (4, 2)},
and {(3, 5), (4, 5), (4, 6), (5, 6), (6, 5), (6, 6)}. A discrete set is called horizontally
and vertically convex (shortly, hv-convex) if all the rows and columns of the

Fig. 1. A discrete set represented by its elements (left) and a binary picture (right)
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set are 4-connected (see Figs. 2c, 2d, and 2e). Let us introduce the following
notations for some classes of hv-convex sets:

– P for the class of hv-convex polyominoes;
– Q for the class of hv-convex 8-connected discrete sets;
– HV ′ for the class of hv-convex discrete sets with nonempty rows and columns;
– HV for the class of hv-convex discrete sets which possibly can have empty

rows and columns.

The following inclusions are trivial,

P ⊂ Q ⊂ HV ′ ⊂ HV . (1)

A polyomino F is northeast directed (NE-directed for short) if there is a
particular point P ∈ F such that for each point Q ∈ F there is a sequence
P0 = P, . . . , Pt = Q of distinct points of F such that each point Pl of the sequence
is north or east of Pl−1 for each l = 1, . . . , t (see Fig. 2f). Similar definitions can
be given for SW-, SE-, and NW-directedness. An hv-convex polyomino is called
NW/NE-parallelogram polyomino if it is both NW- and SE-directed or both NE-
and SW-directed, respectively (see Fig. 2g).

3 Enumeration of hv-Convex Discrete Sets

The class of hv-convex discrete sets is one of the most important classes in
discrete tomography. Although the reconstruction from two projections in this
class is NP-hard [20] several methods can solve this problem by applying some
heuristic [17], metaheuristic [8] or optimization [11] technique. Besides, for hv-
convex polyominoes and hv-convex 8-connected sets different polynomial-time
reconstruction algorithms have been developed. One of them approximates the
solution iteratively by a nondecreasing sequence of so-called kernel sets and by a
nonincreasing sequence of so-called shell sets (see [6,5,9]). This algorithm has a
worst case time complexity of O(mn·log mn·min{m2, n2}). An other approach is
based on an observation that the reconstruction task can be transformed into a
2SAT task that is solvable in polynomial time [10,18]. This latter algorithm has
a worst case time complexity of O(mn ·min{m2, n2}). In [4] the two algorithms
were compared, and the observations concerning the average execution times of
the two reconstruction approaches led to the design of a hybrid reconstruction
algorithm that has the same worst case time complexity of O(mn ·min{m2, n2})
and remains fast in the average case as well. Recently, an algorithm has been
also published that can perform the reconstruction in the class of hv-convex
8-connected but not 4-connected discrete sets in O(mn ·min{m, n}) time [3].

Summarizing the above-mentioned contributions we can say that the recon-
struction of an hv-convex discrete set is in general a difficult problem but the
additional information that the set satisfies some connectedness properties as
well can adequately facilitate the reconstruction. Now, one can naturally pose
the question whether an hv-convex discrete set – chosen randomly using a uni-
form distribution – often fulfills some connectedness properties as well. To answer
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(b)

(g)(f)

(a)

(c) (d) (e)

Fig. 2. (a) a polyomino, (b) an 8-connected discrete set, (c) an hv-convex polyomino,
(d) an hv-convex 8-connected discrete set, (e) a general hv-convex discrete set, (f) an
NE-directed polyomino, and (g) an NW-parallelogram polyomino

this question we have to identify the cardinality of the class of hv-convex discrete
sets and its subclasses.

Regarding the class P we already have nice closed formulas for describing the
number of hv-convex polyominoes according to several parameters. In [12] it was
proved that the number Pn+4 of hv-convex polyominoes with a semiperimeter
value of n + 4 is

Pn+4 = (2n + 11)4n − 4(2n + 1)
(

2n
n

)

. (2)

Later, based on the above result in [13] it was shown that the number Pm+1,n+1

of hv-convex polyominoes of size (m + 1)× (n + 1) is

Pm+1,n+1 =
m + n + mn

m + n

(
2m + 2n

2m

)

− 2mn

m + n

(
m + n

m

)2

. (3)
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For the number of elements of the classes HV ′ and HV we obtain recursive
formulas from [1]. Let HV

′(t)
m,n denote the number of arbitrary hv-convex discrete

sets of size m×n with nonempty rows and columns which have exactly t compo-
nents. Then HV

′(t)
i,j = 0 if i < t or j < t, and HV

′(1)
i,j = Pi,j for each i = 1, . . . , m

and j = 1, . . . , n. Finally, for every t > 1 and m, n ≥ 1 the following recursion
holds

HV ′(t)
m,n =

∑

k<m, l<n

Pk,l ·HV
′(t−1)
m−k,n−l · t . (4)

With a simple calculation we find that the total number HV ′
m,n of arbitrary

hv-convex discrete sets of size m× n with nonempty rows and columns is

HV ′
m,n =

min{m,n}∑

t=1

HV ′(t)
m,n . (5)

In an analogous way, we also can describe a recursive formula for counting
arbitrary hv-convex sets – perhaps with empty rows or/and columns – as well.

HV (t)
m,n =

∑

k<m, l<n

∑

i≤m−k, j≤n−l

Pk,l ·HV
(t−1)
i,j · t . (6)

Then, the total number of hv-convex discrete sets can be calculated by a formula
similar to (5).

Now, let us investigate the number of hv-convex 8-connected discrete sets of
size m× n. For the sake of technical simplicity we recall some concepts of [1].

Let F be a discrete set with k ≥ 2 components such that Il×Jl = {il, . . . , i′l}×
{jl, . . . j

′
l} is the minimal bounding rectangle of the l-th component of F . We

say that the components of F are disjoint if for any 1 ≤ l, l′ ≤ k l �= l′ implies
that Il ∩ Il′ = ∅ and Jl ∩ Jl′ = ∅. Now, without loss of generality we can assume
that il < il+1 for each l = 1, . . . , k− 1. F is called canonical if jl < jl+1 for each
l = 1, . . . , k − 1. F is called anticanonical if jl > jl+1 for each l = 1, . . . , k − 1.
That is, the discrete set is canonical (anticanonical) if - omitting empty rows and
columns - the minimal bounding rectangles of the components are connected to
each other with their bottom right hand and upper left hand (bottom left hand
and upper right hand) corners (see Fig. 3).

Let us introduce the notations Dm,n, Lm,n, and Qm,n for the number of
NW-directed polyominoes, NW-parallelogram polyominoes, and hv-convex 8-
connected discrete sets of size m×n, respectively. Moreover let Tm,n denote the
number of canonical 8-connected discrete sets whose components are all NW-
parallelogram polyominoes. With these notations we obtain

Theorem 1. For each m, n > 1

Tm,n = Lm,n +
∑

k<m, l<n

Lk,l · Tm−k,n−l (7)
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Fig. 3. The relative position of the minimal bounding rectangles of the components
B1, . . . , Bk of a canonical (left) and an anticanonical (right) discrete set

and

Qm,n = Pm,n + 2
∑

i<m, j<n

∑

k≤m−i, l≤n−j

Di,j ·Dk,l · Tm−k−i,n−j−l . (8)

Proof. Let T denote the class of canonical 8-connected discrete sets which com-
ponents are all NW-parallelogram polyominoes. With this notation Equation (7)
can be proven in the following way. A discrete set F ∈ T of size m× n is either
a NW-parallelogram polyomino (i.e. it has just one component) or it contains a
NW-parallelogram polyomino of size k × l (where k < m and l < n) as a subset
in the upper left hand corner and the remaining part of F is a discrete set of
size (m− k)× (n− l) which also belongs to the T class (see Fig. 3 again). This
observation can be concisely expressed by the recursive formula (7).

To prove Equation (8) we recall the following observations from [3]. A set of
Q is either an hv-convex polyomino or it consists of several hv-convex compo-
nents. Let F ∈ Q be a discrete set having components F1, . . . , Fk such that
{il, . . . , i′l} × {jl, . . . , j

′
l} is the minimal bounding rectangle of the l-th (l =

1, . . . , k) component of F . Without loss of generality we can assume that 1 = i1 ≤
i′1 < i2 ≤ i′2 < . . . ≤ i′k = m. Then, either 1 = j1 ≤ j′1 < j2 ≤ j′2 < . . . ≤ j′k = n,
or n = j1 ≥ j′1 > j2 ≥ j′2 > . . . ≥ j′k = 1. Consequently, such a set of Q is always
canonical or anticanonical.

Due to symmetry the number of canonical and anticanonical sets of Q which
are not polyominoes are the same. Therefore, it is sufficient to calculate the num-
ber of canonical discrete sets of Q and multiply the result by 2. For a canonical
set of Q it is always true that F1, . . . , Fk−1 are NW-directed and F2, . . . , Fk are
SE-directed (that is, F2, . . . , Fk−1 are NW-parallelogram polyominoes). In par-
ticular, we also get that there are hv-convex 8-connected sets which have just
two components and with no parallelogram polyominoes between them. Addi-
tionally, the structure of a canonical set of Q is the following. It contains an
NW-directed polyomino of size i× j in the upper-left corner (where i < m and
j < n), an SE-directed polyomino of size k× l in the bottom right corner (where
k ≤ m− i and l ≤ n−j) and the remaining part (if exists) is a canonical discrete
set of size (m− i− k)× (n− j − l) which components are all NW-parallelogram
polyominoes. Thus, we get the formula (8). 	
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For the number of NW-directed (parallelogram) polyominoes we obtain the for-
mulas from [7]. Namely,

Dm,n =
(

m + n− 2
m− 1

) (
m + n− 2

n− 1

)

(9)

and

Lm,n =
1

m + n− 1

(
m + n− 1

m− 1

) (
m + n− 1

n− 1

)

. (10)

Setting D1,j = Di,1 = L0,j = L1,j = Li,0 = Li,1 = T1,j = Ti,1 = 1 and
T0,j = Ti,0 = 0 for each i = 1, . . . , m and j = 1, . . . , n (for technical reasons we
set T0,0 = 1) we are now able to determine the number of hv-convex 8-connected
discrete sets of size m× n for an arbitrary m and n.

4 Statistics on hv-Convex Discrete Sets

The recursive formulas of Section 3 allow us to examine some important proper-
ties of hv-convex discrete sets that can affect the reconstruction complexity. In
order to get such statistics we first calculated the number of hv-convex discrete
sets in the classes studied. Table 1 shows the number of elements in the classes
P , Q, HV ′, and HV with minimal bounding rectangles of semi-perimeter n for
the first 15 values of n – represented by Pn, Qn, HV ′

n, and HVn, respectively
(the first column can also be calculated via formula (2) and it enumerates the
first 15 elements of Sequence A005436 in [19]). For n = 5 the corresponding
hv-convex binary images are shown in Fig. 4.

Knowing the relations of (1) and with the aid of the statistics presented in
Table 1, we can describe the relative cardinality of the classes examined. With
this information we can, for example, address questions concerning the relative
occurrence of certain hv-convex discrete sets and calculate the probability that
an hv-convex discrete set chosen from a uniform random distribution has some
special properties which can facilitate the reconstruction task.

x2
x2

x4 x4

x8 x8 x4x8

Fig. 4. Some hv-convex binary pictures with a perimeter value of 10. The numbers tell
us that there are other solutions that can be obtained by mirroring or/and rotating
the given polyomino.
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Table 1. The values of Pn, Qn, HV ′
n, and HVn

n Pn Qn HV ′
n HVn

2 1 1 1 1

3 2 2 2 2

4 7 9 9 9

5 28 36 36 40

6 120 154 162 184

7 528 668 732 860

8 2344 2916 3368 4058

9 10416 12741 15520 19240

10 46160 55570 71618 91440

11 203680 241692 329988 435136

12 894312 1047604 1518090 2072672

13 3907056 4524464 6971112 9883264

14 16986352 19470660 3196392 47193776

15 73512288 83500968 146390016 225779728

0,5

0,6

0,7

0,8

0,9

1,0

0 10 20 30 40 50 60 70 80 90 100

Fig. 5. The ratio Pn/Qn (vertical axis) depending on the semiperimeter value n (hor-
izontal axis)

Example 1. Using the entries of Table 1 we can calculate the probability that an
hv-convex discrete set with semi-perimeter value of 6 chosen from a uniform ran-
dom distribution is an hv-convex polyomino (i.e. it consists of one component),
which turns out to be 120/184 ≈ 0.65. If we increase the semi-perimeter value
to 10, say, then this probability decreases to 46160/91440≈ 0.50. Such informa-
tion is especially useful in the reconstruction task as hv-convex polyominoes can
be reconstructed from their horizontal and vertical projections in polynomial
time. In contrast, if the hv-convex set has at least two components then the
reconstruction is NP-hard (see the introduction here). Hence with this method
we can calculate the probability that the reconstruction of the randomly chosen
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Fig. 6. The distributions of the number of components – which depend on the size of
the test data – in the HV ′ ((a)-(d)) and HV ((e)-(h)) classes
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Table 2. The expectation value EHV′(n) (EHV(n)) and the variance D2
HV′(n)

(D2
HV(n)) of the components of a set with a minimal bounding rectangle of size n × n

in the HV ′ (HV) class. The values have been rounded to 5 digits

n EHV ′(n) D2
HV ′(n) EHV (n) D2

HV (n)

20 6.53981 9.84446 9.03570 8.12406

40 26.33821 16.00766 26.11090 9.54114

60 46.30283 12.92260 43.68220 10.00145

80 65.70631 12.05665 61.49588 10.72577

hv-convex set can be performed using a polynomial-time algorithm to recon-
struct an hv-convex polyomino.

Example 2. In [3] the authors presented a very fast algorithm for the reconstruc-
tion of hv-convex 8-connected but not 4-connected discrete sets. From the first
few entries of Table 1 we have the suggestion that the number of such kind of
sets rapidly decreases as the semiperimeter value increases. To verify this, we
calculated the first 100 values of Pn/Qn (see Fig. 5). From this figure it is evi-
dent, that – unfortunately – even for sets of relatively small sizes there is almost
no chance to apply this fast reconstruction algorithm in practice (assuming that
the sets to be reconstructed are from a uniform random distribution), and things
get worse if we want to reconstruct sets of bigger sizes.

With the aid of the formulas (4) and (6) it is also possible to describe the true
distribution of the number of components of the generated hv-convex discrete
set of the HV ′ class since, in this case, we can enumerate the discrete sets of
a given class that have k components. This piece of information is also very
useful when reconstructing images like these. For example, as was discussed in
the introduction of Section 3, if the hv-convex set consists of a single component
then the reconstruction from two projections can be solved in polynomial time,
otherwise it is NP-hard. Furthermore, the number of components of an hv-convex
set also affects the accuracy of the reconstruction heuristic that was presented
in [2]. Namely, the more components the hv-convex discrete set has, it is more
likely that ambiguity will occur in the reconstruction.

Table 2 lists the expectation values and the variances of the variables which
represent the number of components of a discrete set generated using a uniform
random distribution from the HV ′ and HV classes when the size of the minimal
bounding rectangle is n × n for some fixed positive integer n. In addition, the
corresponding distributions are depicted in Fig. 6.

Statistics about the expected number of components can be especially useful
in the reconstruction task. It tells us something about the discrete set to be
reconstructed before we attempt to reconstruct it. Thus, such statistics opens the
way to the design of reconstruction algorithms that exploit information known
beforehand about the expected number of components. The author believes that
such algorithms could be more effective in practice than the previously developed
ones which do not make use of such prior knowledge.
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5 Conclusions

In this paper we have presented recursive formulas to count hv-convex discrete
sets (which possibly have certain connectedness properties as well). With the aid
of these formulas we have collected some statistics on several subclasses of hv-
convex discrete sets. We can use these statistics to analyze the performance of
certain reconstruction algorithms developed for the classes studied. In addition,
it turned out that it is also possible to say something about the number of the
components of an hv-convex discrete set before we attempt to reconstruct it
(if the set arises from a uniform random distribution). Incorporating this prior
knowledge into the reconstruction process can hopefully yield more effective
reconstruction algorithms in the future.
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Abstract. A combinatorial algorithm to compute the orthogonal hull of
a digital object imposed on a background grid is presented in this paper.
The resolution and complexity of the orthogonal hull can be controlled by
varying the grid spacing, which may be used for a multiresolution analysis
of a given object. Existing algorithms on finding the convex hull are
based on divide and conquer strategy, sweepline approach, etc., whereas
the proposed algorithm is combinatorial in nature whose time complexity
depends on the object perimeter instead of the object area. For a larger
grid spacing, the perimeter of an object decreases in length in terms of
grid units, and hence the runtime of the algorithm reduces significantly.
The algorithm uses only comparison and addition in the integer domain,
thereby making it amenable to usage in real-world applications where
speed is a prime factor. Experimental results including the CPU time
demonstrate the elegance and efficacy of the proposed algorithm.

1 Introduction

The convex hull of an object A, denoted by CH(A), is the smallest convex
set that contains A. There exist a number of algorithms [3,9,17] to find the
convex hull of a point set or a polygonal object A having arbitrary shape on
the real plane. The time complexities of some of the referred ones are of order
O(n3) (brute force), O(n log n) (Graham scan [12]), O(nh) (Jarvis march [13]),
and O(n log h) (Kirkpatrick-Siedel’s algorithm [15]), where, n is the number of
points/vertices constituting A, and h is the number of vertices of CH(A). Also,
there are other algorithms on finding the convex hull, e.g., [2,7,23]. A detailed
analytical study of the convex hull algorithms may be seen in [1].

Apart from the concept of convex hull, other types of hulls, such as pseudo-
hull, near-hull [16], digital convex hull [8], relative convex hull [20], and α-hull
[11], can be also found in literature, which are designed for specific applications.
However, the execution of these algorithms for sufficiently large digital object is
not as fast as required in a practical application.

V.E. Brimkov, R.P. Barneva, H.A. Hauptman (Eds.): IWCIA 2008, LNCS 4958, pp. 124–135, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. A sample 2D object, its convex hull (left), and its orthogonal hulls for grid size
g = 22 (middle) and g = 8 (right)

Some of the typical applications involving convex hulls are analysis of land-
mark data, shape analysis and classification, measuring the polygonal entropy,
and many such areas of computer vision and pattern recognition [5,10,14,18].
A properly defined convex polygon describing a real or a digital object is often
considered to be the domain of interest of the underlying object. As a result, the
subject has received a considerable attention amongst researchers [6,21,22,24].

This paper presents a novel algorithm for finding the orthogonal hull (Sec. 2)
of a given digital object, the hull edges lying on a set of equally spaced horizontal
and vertical grid lines. The ordered list of hull vertices is obtained by an analysis
of the object occupation of the four neighboring quadrants corresponding to a
grid point. The orthogonal hull consists of fewer vertices with an increase of
the grid size (spacing between two consecutive horizontal/vertical grid lines),
enabling a multiresolution analysis of the object. The algorithm is based on
the fact that a polygon is orthogonally convex if and only if a counterclockwise
traversal of its boundary never makes two consecutive right turns. The algorithm
involves only comparison and addition/subtraction in the integer domain, and
hence runs very fast, as demonstrated by the CPU time in our experiments.

The convex hull and the orthogonal hulls for g = 22 and g = 8, corresponding
to a digital object, are shown in Fig. 1. The convex hull algorithm (Graham
Scan) on a digital object (22404 pixels) shown in this figure takes a few seconds,
whereas the proposed algorithm on finding the orthogonal hull takes only a few
milliseconds (g = 22 : 0.94 msec., g = 8 : 3.16 msec.). The Graham Scan, how-
ever, takes less time for the object contour; but finding the object contour needs
an edge extraction algorithm. On the contrary, given an object, the proposed
algorithm runs on the object contour without resorting to edge extraction.

Apart from the speed, the proposed algorithm has the ability to capture the
shape information of the object. For example, for g = 22, the orthogonal hull
of the object shown in Fig. 1 is vertically symmetrical, which conforms to the
vertical symmetry of the object; for g = 8, the orthogonal hull is also almost
symmetrical. The vertices of the orthogonal hull are reported in order in terms
of their types (900 and 2700), from which the symmetry can be ascertained. The
non-convex regions — detected and removed to derive the corresponding convex
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regions using certain semantic rules based on a combinatorial analysis — also
captures the shape complexity of the concerned object, which can be used in
subsequent applications.

2 Definitions and Preliminaries

A subset of Z
2 in which every pair of points is k-connected1 is called a k-

connected set. (In this paper, we define a digital object A to be an 8-connected
subset A ⊂ Z

2 whose complement Z
2 \ A is a 4-connected set [19].) The back-

ground grid (G) is defined as a set of uniformly spaced horizontal and vertical
grid lines, G = (H,V), where H and V represent two sets of equi-spaced horizon-
tal and vertical grid lines respectively. The grid size g is defined as the distance
between two consecutive horizontal/vertical grid lines. A grid point is the point
of intersection of a horizontal and a vertical grid line. P is an orthogonal poly-
gon if and only if each of its vertices is a grid point of G and each of its edges
is axis-parallel. The orthogonal convex hull, or simply orthogonal hull, of
a digital object A, denoted by OH(A), is the smallest area orthogonal polygon
such that (i) no point p ∈ A lies on or outside OH(A) and (ii) intersection of
OH(A) with any horizontal or vertical line is either empty or a line segment.

2.1 Orthogonal Traversal of the Object Contour

In order to detect and remove the concavities, we traverse around the object
contour, orthogonally along the grid lines. The nature of traversal is such that
we visit the vertices (in order) of the smallest-area orthogonal cover of the digital
object using an efficient combinatorial technique based on object containments
of the four cells incident at a particular grid point [4]. The characteristics of a
grid point p in G is determined by object containments of the four neighboring
cells of size g × g incident at p.

During traversal, a grid point is determined either as a vertex or as a non-
vertex point. Since we traverse orthogonally, a grid point, p, if detected as a
1 Two points p and q are said to be k-connected (k = 4 or 8) in a set S if and only

if there exists a sequence 〈p = p0, p1, . . . , pn = q〉 ⊆ S such that pi ∈ Nk(pi−1) for
1 ≤ i ≤ n.
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vertex, can be a 900 vertex or a 2700 vertex. Otherwise, p is simply a point on
the edge of the orthogonal cover, or a grid point lying inside/outside the object
and also inside/outside the orthogonal cover. The classification of p is based
on the object containment of the four cells (Q1 − Q4) incident at p and their
combinatorial arrangement (Fig. 2). If number of object-containing cells incident
at p is i, then p is classified to class Ci as follows.

C0 : p is not a vertex, since none of Qis has object containment.
C1 : Exactly one of the Qis is intersected by the object. Hence p is classified as

a 900 vertex, as shown in Fig. 2(a).
C2 : Two cells occupied by the object can have two different arrangements:

(i) if adjacent cells are occupied, then p is an edge point (Fig. 2(d));
(ii) if diagonally opposite cells are occupied, then p is a 2700 vertex (Fig. 2(c)).
Out of the four edges incident at p, exactly two edges will be traversed so
that p becomes a 2700 vertex. For example, if p is visited from the left/right,
then the outgoing edge from p will be directed downwards/upwards (shown
in firm/dotted lines).

C3 : Three cells are occupied by the object and hence p is classified as a 2700

vertex (Fig. 2(b)).
C4 : All four cells are occupied by the object, and so p is not a vertex.

Henceforth in this paper, a 900 vertex is referred to as a type ‘1’ vertex, and a
2700 vertex as a type ‘3’ vertex. The start point of the traversal is determined by
a row-wise scan of the grid points and start vertex is the first grid point classified
as a 900 vertex (we assume, w.l.o.g., that the object lies left during traversal).

3 Finding the Orthogonal Hull

The concavities present in the orthogonal cover are detected and removed when
the object boundary is traversed along the grid lines as mentioned in Sec. 2.1.
Hence the proposed algorithm finds the orthogonal hull of a digital object with-
out any prior knowledge about its orthogonal cover. Deriving the orthogonal hull
is, therefore, very fast.

During the traversal, each vertex, vi, is represented by a two-tuple 〈ti, li〉,
where, ti (= 1 or 3) is the type of the vertex and li is the length of the line
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segment from vi to vi+1. Also, the direction of traversal, di, from vi, can assume
the value 0, 1, 2, or 3, indicating the direction towards left, top, right, or bottom
respectively. The direction of traversal at vi, derived from the previous direction
and the type of the vertex vi, is given by di = (di−1 + ti) mod 4.

During the traversal, if two vertices of type 3 appear consecutively, then it im-
plies a concave region, which defies the property of orthogonal convexity (Sec. 2).
Illustrated in Fig. 3 is two such patterns for which the intersection of a vertical or
a horizontal line, L, with the orthogonal polygon has more than one segment. The
goal is to identify such regions and derive the edges of the orthogonal hull such that
the properties of orthogonal convexity are maintained. In this incremental algo-
rithm, the part of the orthogonal hull obtained upto a point does not contain two
consecutive vertices of type 3, which acts as the invariant of the algorithm. When-
ever such an occurrence appears, we apply necessary reduction rules to maintain
the algorithm invariant and to ensure the orthogonal convexity, thereof. However,
rest of the patterns, 13, 31, and 11, are in conformance with the algorithm invari-
ant and hence do not violate the properties of orthogonal convexity.

3.1 Setting the Rules

Let v1, v2, v3, and v4 be four consecutive vertices for which the rule has to be
applied in order to remove the concavity, if any. Let the vertex preceding v1 be
v0, if any. If v0 exists, then the rule is applied on the vertex tuple formed by
v0, v1, . . . , v4; otherwise, the rule is applied on the tuple formed by v1, v2, . . . , v4.

Since a reduction rule is applied only when two consecutive vertices have type
3, there can be two sets of rules depending on whether the type of the vertex
following the pattern 33 is 1 or 3. We consider that the two consecutive vertices
of type 3 are designated by v2 and v3, and the vertex v1 preceding v2 is of
type 1. For, in our algorithm, the traversal always starts from a vertex of type
1, which is verified from the combinatorial arrangement of its four neighboring
cells (Sec. 2.1). This policy of starting the traversal always ensures that there
will be at least one type-1 vertex preceding two consecutive vertices of type 3.

Pattern 1331: This signifies a type-1 vertex followed by two consecutive type-3
vertices and another type-1 vertex. Occurrence of two consecutive 3s essentially
signifies a concavity in the object, as explained earlier. The rules for removal of
the associated concavities are stated in Fig. 4. The concave regions are detected
and coalesced to their corresponding convex products using the related edge
lengths in the reduction mechanism. There can arise three cases depending on
the relation between l1 and l3, which are as follows:
Rule R11: Applied when l1 = l3.
If v0 exists, then v1, v2, v3, and v4 are removed, and the length of v0 is modified
to l0 + l2 + l4. If v0 does not exist, then v2, v3, and v4 are removed, and l1 is
modified to l2 + l4.
Rule R12: Applied when l1 > l3.
v2 is modified to v′2 such that l1 becomes l1− l3, l2 is modified to l2 + l4, and v4

is removed. This rule is irrespective of whether or not v0 exists.
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Rule R21 (l1 < l3):
〈v0(t0, l0),
v1(1, l1),
v2(3, l2),
v3(3, l3),
v4(3, l4)〉
(if v0 exists)
→ 〈v0(t0, l0 + l2), v

′
3(3, l3 − l1),

v4(3, l4)〉
(if v0 does not exist)
→ 〈v1(1, l2), v

′
3(3, l3 − l1), v4(3, l4)〉

Rule R21 for pattern 1333.

Fig. 4. Concavity detection and removal rules for patterns 1331 and 1333
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Rule R13: Applied when l1 < l3.
If v0 exists, then v1 and v2 are removed, and v3 is modified to v′3 such that l0 and
l3 become l0 + l2 and l3− l1 respectively. If v0 does not exist, then l1 is modified
to l2, v2 is removed, and v3 is modified to v′3 such that l3 becomes l3 − l1.

In Fig. 4, the rules have been illustrated when v0 exists. Illustration of the
cases, for which v0 does not exist, is apparent.

Pattern 1333: Such a pattern signifies a convoluted object boundary. Hence,
the traversal is continued until the orthogonal chain comes out of the convoluted
region. The rules for removal of concavity starting with such pattern, shown in
Fig. 4, Fig. 5, and Fig. 6, are as follows.

Rule R21: Applied when l1 < l3.
If v0 exists, then v3 is modified as v′3, such that length l0 is modified to l0 + l2,
l3 is modified to l3− l1, and vertices v1 and v2 are removed. If v0 does not exist,
l1 is modified to l2, v3 is modified to v′3 such that length l3 becomes l3 − l1, and
v1 and v2 are removed. Fig. 4 illustrates the rule when v0 exists.

Rule R22: Applied when l1 � l3 and l4 � l2.
Two critical lengths, l1 crit = l1 − l3 and l4 crit = l2, are defined and compared
against the current lengths, l1 curr and l4 curr, which are initialized as l1 curr =
l1−l3 and l4 curr = l4. The traversal is continued as long as either l1 curr � l1 crit

(the currently traversed point belongs to the half-plane right of lV , inclusive of lV ,
as shown in Fig. 5), or l4 curr � l4 crit (the current point belongs to the half-plane
above lH , inclusive of lH). With each traversal, the values of l1 curr and l4 curr

are updated from the current direction of traversal. When the traversal reaches
a point where l1 curr < l1 crit and l4 curr < l4 crit, both the conditions are
simultaneously satisfied, and the reduction is done. The traversed intermediate
points are not considered for reduction. The reduction is as follows. Length l1 is
modified to l1 curr, v2 is modified to v′2 such that l2 = l2 − l4 curr, and v3 and
v4 are removed. This is irrespective of whether v0 exists or not.

For example, in Fig. 5, we get the current set of vertices for reduction as
v0v1v2v3v4. Please note that this chain is obtained due to the reduction of
v1vxvyvzv3 (Rule R21). When vp and vq are visited (in order) no reduction
is done, the vp and vq are discarded and l1 curr and l4 curr are updated. The
reduction is only done when the traversal reaches vr.

Rule R23: Applied when l1 � l3 and l4 < l2.
Similar to rule R22, the traversal is continued until the currently traversed point
is below lH and to the left of lV (for Fig. 6). The parameters are initialized as
l1 crit = l1 − l3, l1 curr = l1 − l3, l4 crit = l2, and l4 curr = l4. The traversal is
continued unless both l1 curr < l1 crit and l4 curr < l4 crit. This rule has two
different subcases depending upon the value of l1 curr. The reduction rules are
(i) R23A: applied when l1 curr � 0; (ii) R23B: applied when l1 curr < 0, which
are stated clearly in Fig. 6.
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Rule R22 (l1 � l3 and l4 � l2):
〈v0(t0, l0), v1(1, l1), v2(3, l2), v3(3, l3), v4(3, l4)〉
→ 〈v0(t0, l0), v1(1, l1 curr), v′
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→ 〈v1(1, l1 curr), v

′
2(3, l2 − l4 curr)〉 (if v0 does not exist)

Fig. 5. Rule R22 for pattern 1333
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R23A (l1 > l3, l4 < l2)
i) (l1 curr � 0):
〈v0(t0, l0),
v1(1, l1),
v2(3, l2),
v3(3, l3),
v4(3, l4)〉
(if v0 exists)
→ 〈v0(t0, l0), v1(1, l1 − l3),
v′
2(3,(l2 − l4 curr),
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(if v0 does not exist)
→ 〈v1(1, l1 − l3), v

′
2(3, (l2 −

l4 curr), v
′
3(3, (l1 − l3 − l1 curr)〉
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R23B (l1 > l3, l4 < l2)
ii) (l1 curr < 0):
〈v0(t0, l0),
v1(1, l1),
v2(3, l2),
v3(3, l3),
v4(3, l4)〉
(if v0 exists)
→ 〈v0(t0, (l0 + l2 − l4 curr)),
v′
1(3, |l1 curr|〉

(if v0 does not)
→ 〈v1(1, (l2 − l4 curr)),
v′
1(3, |l1 curr|〉

Fig. 6. Rules R23A and R23B for pattern 1333. Note that illustrations on the right
only consists of the cases where v0 exists.
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Fig. 7. Demonstration of the algorithm on a sample 2D object. Each image shows the
result after removal of the concave parts in successive steps.

3.2 Applying the Rules

The rules for detection and removal of concavities are applied while traversing
along the object contour in an orthogonal path. A stack S contains the vertices
after applying the reduction rules so far. The vertices, currently under inspection,
are stored in a variable-length link list, L, whose maximum length is five. The
head of the list L has the least recent vertex. According to our traversal strategy,
we always get a vertex of type 1 before the first 33 pattern (Sec. 3.1). Since S
does not contain a pattern 33 (according to the algorithm invariant, see Sec. 3),
the pattern 33 occurs only in the list L.

L is initialized with the first five vertices visited (in order) so that its first
vertex v0 is of type 1. After applying the reduction rule, the vertices decrease
in number according to the corresponding rule, although the type of first vertex
in L remains unchanged. When the number of vertices in L is less than five,
new vertex/vertices is/are popped from S and added to the rear of L to make it
contain five vertices until the stack is empty or no reduction rule is applicable.

If S is empty or no reduction rule is applicable, then the vertex v0 of L is
pushed to S and the traversal is continued to find a new vertex to be added to
the front of L. Next, the pattern of vertices in L are checked for its reducibility.
If a reduction rule is applied, then vertices are popped from S, added to the rear
of L, and applied with subsequent reductions iteratively. The above process is
continued until the start vertex is reached, which indicates the termination of
the algorithm. The orthogonal hull is reported by the vertices in L, starting from
the front of L and followed by the vertices popped from S. Fig 7 demonstrates
the algorithm and shows how the concave regions are removed in different steps.

Time Complexity: Since the object is a connected set, the containment of
the object in a cell incident at a grid vertex p is verified from the intersection
of the object with the four edges of the corresponding cell. For each edge, the
intersection can be checked in O(g) time, where g is the grid size. Hence, checking
the object containment in any cell can be done in 4×O(g) = O(g) time.

During traversal of the grid points lying immediately outside the object con-
tour, we visit each grid point pi from the preceding one pi−1 using the information
on intersection of the object with the edges incident at pi−1. For example, in
Fig. 2(a), if pi−1 is of type 1 which has been visited along the vertical edge (from
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its predecessor, pi−2), then pi is visited along the horizontal edge from pi−1. Thus,
the number of grid points visited while traversing orthogonally along the object
contour is bounded by O(n/g), where n is the number of points constituting
the object contour. The resultant time complexity for visiting all the vertices
is, therefore, given by O(n/g) · O(g) = O(n). Note that, each grid point lying
on the orthogonal path of traversal is visited either once (Fig. 2(a, b, d)) or
twice (Fig. 2(c)). The time spent over detection and removal of concavities is
associated with checking a pattern in the list L and applying the reduction rule,
whenever necessary. If a pattern does not contain two consecutive 3s, then the
vertex v0 is pushed to the stack S in O(1) time, and a new vertex is visited in
O(g) time. If the pattern undergoes a reduction, then the reduced L needs (at
least) one or (at most) two pops from S. For, in a particular iteration, popping
is done from S until we get a vertex type 1, and no two consecutive vertices in S
are of type 3. Maximum number of reductions is bounded by O(n/g)− 4, since
at most O(n/g) vertices are visited and the orthogonal hull consists of at least
four vertices. Thus, total number of stack operations (push and pop) is given by
(O(n/g)− 4) ·O(1) = O(n/g). Hence, the total time complexity for finding the
orthogonal hull of a digital object is given by O(n) + O(n/g) = O(n).

4 Experimental Results and Discussions

The proposed algorithm is implemented in C on a Sun Ultra 5 10, Sparc, 233
MHz, the OS being the SunOS Release 5.7 Generic, and has been tested on
(i) database D1 containing 1034 logo images (received on request, from Prof.
Anil K. Jain and Aditya Vailya of Michigan State Univ., USA); (ii) a col-
lected database D2 having 520 shape images; (iii) 100 test curves; (iv) a selected
database of optical characters.

The algorithm can be easily extended to an image having more than one con-
nected set and depending upon the grid size, the outcome may be one orthogonal

Table 1. Number of object pixels, area of convex hull, areas of orthogonal hull and
the CPU time consumed in milliseconds (for different grid sizes), CPU time required
for convex hull computation using Graham Scan, number of convex hull vertices and
number of vertices of orthogonal hull (for different grid sizes) are shown above

image name image size #pixels |CH | A(CH) T (CH) |OH | A(OH) T (OH)

logo245 288 × 288 9868 82 39509 987 g = 4 86 35392 9
g = 16 32 41216 2

logo247 288 × 288 10096 67 32419 1221 g=4 58 29824 10
g = 16 30 35328 1

logo353 288 × 288 18122 46 32241 1812 g=4 116 30792 14
g = 16 48 35840 3

|CH | and |OH | denote the number of convex hull vertices and the number of
orthogonal hull vertices; A(CH) and A(OH) are their respective areas; and T (·)
indicates the CPU time in milliseconds.
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(a) g = 4 (b) g = 8 (c) g = 4 (d) g = 8

Fig. 8. The orthogonal hulls of two images for grid spacings, g = 4 and g = 8

hull (comprising more than one connected set). Some of the results for sample
images are shown in Fig. 8 for g = 4 and g = 8. The orthogonal hull is shown in
blue color whereas the gray color polygon indicates the smallest-area orthogonal
polygon describing the object which is traversed during the derivation of the
orthogonal hull. In Table 3.2, the area of the convex hull and the areas of the
orthogonal hull for different grid sizes are presented. The number of convex hull
vertices, the CPU time required for computation of the convex hull, the number
of vertices of the orthogonal hull, and the CPU times at different grid sizes are
also presented in the table. It can be seen from the data that the number of
vertices of OH(A) decreases and its area increases with the increase of grid size.
Also, the computation time drops drastically for higher grid sizes.

5 Conclusion

A combinatorial algorithm is presented to construct the orthogonal convex hulls
of a digital object for various grid resolutions. The worst-case time complexity of
the algorithm is linear in the size of the contour. The actual runtimes on different
images reinforce its speedy execution. The algorithm is a single-pass algorithm,
and outputs the (types and outgoing edge-lengths of) vertices of the orthogonal
hull in order. Hence, we can utilize the orthogonal hull description in some suitable
application like shape analysis, shape-based image retrieval, etc. For example, the
number of times the reduction rules are applied during the traversal for removal
of a concavity can be used to measure the distribution of shape complexity over a
large and complex object. Presently, we are working on shape analysis of objects
using their orthogonal hulls, which will be reported in future.
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Abstract. We present an approach for supervised pattern recognition
based on combinatorial analysis of optimum paths from key samples (pro-
totypes), which creates a discrete optimal partition of the feature space
such that any unknown sample can be classified according to this parti-
tion. A training set is interpreted as a complete graph with at least one
prototype in each class. They compete among themselves and each pro-
totype defines an optimum-path tree, whose nodes are the samples more
strongly connected to it than to any other. The result is an optimum-
path forest in the training set. A test sample is assigned to the class
of the prototype which offers it the optimum path in the forest. The
classifier is designed to achieve zero classification errors in the training
set, without over-fitting, and to learn from its errors. A comparison with
several datasets shows the advantages of the method in accuracy and
efficiency with respect to support vector machines.

Keywords: supervised learning, optimum-path forest, image foresting
transform, pattern recognition, graph-search algorithms.

1 Introduction

Graph-based approaches for pattern recognition are usually unsupervised (data
clustering). They mostly follow a same principle of creating a neighborhood
graph for the data samples and then removing inconsistent arcs based on some
criterion [14]. Other approaches interpret data clustering as a graph-cut prob-
lem [26]. Problems in these approaches are the overlap between different clusters
and no guarantee of success, because it is hard to assign samples to their cor-
rect class without any prior knowledge. Such problems are better treated by
supervised approaches.

Artificial neural networks (ANN) [13] and support vector machines (SVM) [4]
are supervised approaches actively pursued in the last years. An ANN multi-
layer perceptron (ANN-MLP) trained by backpropagation, for example, is an
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unstable classifier. Its accuracy may be improved at the computational cost of
using multiple classifiers and algorithms (e.g., bagging and boosting) for train-
ing classifier collections [16]. However, it seems that there is an unknown limit
in the number of classifiers to avoid accuracy degradation [23]. ANN-MLP as-
sumes that the classes can be separated by hyperplanes in the feature space.
Such assumption is unfortunately not valid in practice. SVM was proposed to
overcome the problem by assuming it is possible to separate the classes in a
higher dimensional space by optimum hyperplanes.

Although SVM usually provides reasonable accuracies, its computational cost
rapidly increases with the training set size and the number of support vectors. As
a binary classifier, multiple SVMs are required to solve a multi-class problem [11].
Two main approaches are one-versus-all (OVA) and one-versus-one (OVO). OVA
projects c SVMs to separate each class from the others. The decision is taken for
the class with highest confidence value. OVO requires c(c−1)

2 SVMs by taking into
account all binary combinations between classes. The decision is usually taken by
majority vote. Tang and Mazzoni [28] proposed a method to reduce the number
of support vectors in the multi-class problem. Their approach suffers from slow
convergence and high computational complexity, because they first minimize the
number of support vectors in several binary SVMs, and then share these vectors
among the machines. Panda et al. [20] presented a method to reduce the training
set size before computing the SVM algorithm. Their approach aims to identify
and remove samples likely related to non-support vectors. However, in all SVM
approaches, the assumption of separability may also not be valid in any space
of finite dimension [8].

We present a supervised pattern classifier which exploits the strength of con-
nectedness between samples in the feature space. Each sample in the training set
is a node of a complete graph (i.e., the arcs connect all pairs of nodes) and each
arc is weighted by the distance between the feature vectors of its corresponding
nodes (Figure 1a). A path in the graph is a sequence of nodes connecting two
terminal samples, each path has a cost given by a path-cost function (e.g., func-
tion fmax which assigns the maximum arc weight along the path), and a path is
optimum when its cost is minimum. The strength of connectedness between two
samples is inversely proportional to the cost of an optimum path between them.
The method identifies the nodes (prototypes) that best represent all classes and
computes the minimum-cost paths from the prototypes to the remaining nodes,
such that each sample becomes part of one optimum path tree rooted at its most
strongly connected prototype (Figure 1b). This procedure partitions the graph
(training set) into an optimum path forest (OPF), concluding the training step.

The classification of a test sample evaluates the optimum paths from the
prototypes to this sample incrementally, as though it were part of the graph
(Figure 1c). The optimum path from the most strongly connected prototype,
its label and path cost (classification cost) are assigned to the test sample
(Figure 1d). Note the difference between an OPF classifier with fmax and the
nearest neighbor approach [10]. The test sample is assigned to a given class, even
when its closest labeled sample is from another class.
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The OPF classifier extends the image foresting transform (IFT) — a tool for
the design of image processing operators based on connectivity [12] — from the
image domain to the feature space. The optimum path forest with fmax pro-
duces in the feature space similar result to the image segmentation based on
relative-fuzzy connectedness [25] and watershed transform by markers (proto-
types) [3,30,17]. These aspects represent important theoretical contributions by
relating distinct approaches based on the same underlying concepts. Besides, we
compute prototypes by exploiting the relation between minimum spanning trees
and minimum-cost path trees for fmax [1]. This property holds that the label of
a prototype will be the same of the training samples in its optimum path tree
(i.e., the training samples are always correctly classified by the prototypes).

Other contribution of this work concerns learning algorithms, which can teach
a classifier from its errors on a third evaluation set without increasing the train-
ing set size. As the samples in the test set can not be seen during the project,
the evaluation set is necessary for this purpose. The basic idea is to randomly
interchange samples of the training set with misclassified samples of the evalua-
tion set, retrain the classifier and evaluate it again, repeating this procedure for
a few iterations. The effectiveness is measured by comparing the results on the
unseen test set before and after the learning algorithm. It should be expected
an improvement in performance for any stable classifier.

The OPF framework has also been investigated for unsupervised pattern
recognition with applications to image segmentation [24]. The supervised OPF
classifier was first presented in [21] and it has been successfully used for texture
object recognition [18]. The present work differs from the previous works in the
learning methodology, which is simpler and can achieve better performance in
most cases. It also uses more datasets to compare the classifiers.

Section 2 introduces the OPF classifier and its novel learning procedure. In
Section 3, we compare the OPF classifier with support vector machines [4].
This comparison uses databases with outliers and non-separable multiple classes.
Conclusions are further discussed in Section 4.

2 Optimum Path Forest Classifier

This section aims to present the new and fast approach to pattern recognition
called Optimum Path Forest (OPF) [21]. The OPF approach works by modeling
the patterns as being nodes of a graph in the feature space, where every pair
of nodes are connected by an arc (complete graph). This classifier creates a
discrete optimal partition of the feature space such that any unknown sample
can be classified according to this partition. This partition is an optimum path
forest computed in �n by the image foresting transform (IFT) algorithm [12].

Let Z1, Z2, and Z3 be respectively the training, evaluation, and test sets with
|Z1|, |Z2|, and |Z3| samples such as feature vectors. Let λ(s) be the function
that assigns the correct label i, i = 1, 2, . . . , c, from class i to any sample s ∈
Z1∪Z2∪Z3. Z1 and Z2 are labeled sets used to the design of the classifier and the
unseen set Z3 is used to compute the final accuracy of the classifier. Let S ⊂ Z1
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be a set of prototypes of all classes (i.e., key samples that best represent the
classes). Let v be an algorithm which extracts n attributes (texture properties)
from any sample s ∈ Z1 ∪Z2 ∪Z3 and returns a vector v(s) ∈ �n. The distance
d(s, t) between two samples, s and t, is the one between their feature vectors
v(s) and v(t) (e.g., Euclidean or any other valid metric).

Let (Z1, A) be a complete graph whose the nodes are the samples in Z1.
We define a path as being a sequence of distinct samples π = 〈s1, s2, . . . , sk〉,
where (si, si+1) ∈ A for 1 ≤ i ≤ k − 1. A path is said trivial if π = 〈s1〉. We
assign to each path π a cost f(π) given by a path-cost function f . A path π is
said optimum if f(π) ≤ f(π′) for any other path π′, where π and π′ end at a
same sample sk. We also denote by π · 〈s, t〉 the concatenation of a path π with
terminus at s and an arc (s, t). The OPF algorithm uses the path-cost function
fmax, because of its theoretical properties for estimating optimum prototypes:

fmax(〈s〉) =
{

0 if s ∈ S,
+∞ otherwise

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)}. (1)

We can observe that fmax(π) computes the maximum distance between ad-
jacent samples in π, when π is not a trivial path. The OPF algorithm assigns
one optimum path P ∗(s) from S to every sample s ∈ Z1, forming an optimum
path forest P (a function with no cycles which assigns to each s ∈ Z1\S its
predecessor P (s) in P ∗(s) or a marker nil when s ∈ S. Let R(s) ∈ S be the root
of P ∗(s) which can be reached from P (s). The OPF algorithm computes for each
s ∈ Z1, the cost C(s) of P ∗(s), the label L(s) = λ(R(s)), and the predecessor
P (s), as follows.

Algorithm 1. – OPF algorithm

Input: A λ-labeled training set Z1, prototypes S ⊂ Z1 and the pair (v, d) for
feature vector and distance computations.

Output: Optimum path forest P , cost map C and label map L.
Auxiliary: Priority queue Q and cost variable cst.

1. For each s ∈ Z1\S, set C(s) ← +∞.
2. For each s ∈ S, do
3. C(s) ← 0, P (s) ← nil, L(s) ← λ(s), and insert s in Q.
4. While Q is not empty, do
5. Remove from Q a sample s such that C(s) is minimum
6. For each t ∈ Z1 such that t �= s and
7. C(t) > C(s), do
8. Compute cst ← max{C(s), d(s, t)}.
9. If cst < C(t), then
10. If C(t) �= +∞, then remove t from Q.
11. P (t) ← s, L(t) ← L(s), C(t) ← cst and insert t in Q.

Lines 1−3 initialize maps and insert prototypes in Q. The main loop computes
an optimum path from S to every sample s in a non-decreasing order of cost
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(Lines 4 − 11). At each iteration, a path of minimum cost C(s) is obtained in
P when we remove its last node s from Q (Lines 5). Lines 9 − 11 evaluate if
the path that reaches an adjacent node t through s is cheaper than the current
path with terminus t and update the position of t in Q, C(t), L(t) and P (t)
accordingly. The label L(s) may be different from λ(s), leading to classification
errors in Z1. The training finds prototypes with none classification errors in Z1.
The OPF algorithm works with two phases: training and classification (test), as
described in the following two sections.

2.1 Training Phase

We say that S∗ is an optimum set of prototypes when Algorithm 1 propagates
the labels L(s) = λ(s) for every s ∈ Z1. Set S∗ can be found by exploiting the
theoretical relation between Minimum Spanning Tree (MST) [1] and optimum
path tree for fmax. The training essentially consists of finding S∗ and an OPF
classifier rooted at S∗.

By computing an MST in the complete graph (Z1, A), we obtain a connected
acyclic graph whose nodes are all samples of Z1 and the arcs are undirected
and weighted by the distances d between adjacent samples. The spanning tree is
optimum in the sense that the sum of its arc weights is minimum as compared to
any other spanning tree in the complete graph. In the MST, every pair of samples
is connected by a single path which is optimum according to fmax. That is, the
minimum-spanning tree contains one optimum-path tree for any selected root
node [1].

The optimum prototypes are the closest elements of the MST with differ-
ent labels in Z1. By removing the arcs between different classes, their adjacent
samples are inserted in S∗ and Algorithm 1 can compute an optimum-path
forest with zero classification errors in Z1. It is not difficult to see that the op-
timum paths between classes should pass through the same removed arcs of the
minimum-spanning tree. The choice of prototypes as just described blocks these
passages, avoiding samples of any given class be reached by optimum paths from
prototypes of other classes.

Note that, a given class may be represented by multiple prototypes (i.e.,
optimum-path trees) and there must exist at least one prototype per class.

2.2 Classification

For any sample t ∈ Z3, the OPF consider all arcs connecting t with samples
s ∈ Z1, as though t were part of the graph (Figure 1c). Considering all possible
paths from S∗ to t, we wish to find the optimum path P ∗(t) from S∗ and label t
with the class λ(R(t)) of its most strongly connected prototype R(t) ∈ S∗. This
path can be identified incrementally, by evaluating the optimum cost C(t) as

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (2)

Let the node s∗ ∈ Z1 be the one that satisfies the above equation (i.e., the
predecessor P (t) in the optimum path P ∗(t)). Given that L(s∗) = λ(R(t)), the
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Fig. 1. (a) Complete weighted graph for a simple training set. (b) Resulting optimum
path forest for fmax and two given prototypes (circled nodes). The entries (x, y) over
the nodes are, respectively, the cost and the label of the samples. The arrow indicates
the predecessor node in the optimum path. (c) Test sample (gray square) and its
connections (dashed lines) with the training nodes. (d) The optimum path from the
most strongly connected prototype, its label 2, and classification cost 0.4 are assigned
to the test sample.

classification simply assigns L(s∗) to t. An error occurs when L(s∗) �= λ(t). Note
the difference between an OPF classifier with fmax and the nearest neighbor
approach [10]. The test sample is assigned to a given class, even when its closest
labeled sample is from another class (Figure 1d).

3 Experimental Results

Two experiments were conducted to demonstrate the discriminative power of the
OPF classifier for pattern recognition as compared to support vector machines
(SVM).

In the first experiment (Section 3.1), we compare the accuracy of the OPF
and SVM classifiers, by training them on set Z1 and testing them on set Z3 for
several randomly selected instances of Z1 and Z3.

In the second experiment (Section 3.2), we evaluate the ability of OPF and
SVM to learn from their errors on a third evaluation set Z2.

Several datasets have been used for comparative analysis: MPEG-7 [19], Brain
[7], Corel [9], Wisconsin Breast Cancer (WBC) [2] and four synthetic databases
[15]: Cone-torus, Saturn, Petals and Boat. The samples in these datasets repre-
sent shapes, images, pixels (voxels).

The MPEG-7 is a database with 1400 shapes equally distributed in 70 classes.
We used the Fourier Shape descriptor (FD) [22] and the Multiscale Fractal Di-
mension descriptor (MS) [29] as the feature vectors that will encode the shapes.
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The Brain database contains voxels from white and gray matters in magnetic
resonance images of the human brain, and its feature vector is composed by the
lowest and highest values around the voxel, and its intensity value.

The well known Corel database contains 1607 colored images distributed in 49
classes. We used the Color Histogram descriptor (CHIST) [27] as been the feature
vector to represent each image and the WBC database was represented by its own
descriptor. As the synthetic databases are drawn in the two dimensional space,
each sample is represented by its (x, y) coordinates (descriptor XY). Recall that
for all descriptors addressed above, we used as the distance function between two
samples, which are represented by their feature vectors, the euclidean distance.

The accuracy of the classifiers is measured by taking into account that the
classes may have different sizes in Z2 (similar definition is applied for Z3). Let
NZ2(i), i = 1, 2, . . . , c, be the number of samples in Z2 from each class i. We
define

ei,1 =
FP (i)

|Z2| − |NZ2(i)| i = 1, . . . , c (3)

and

ei,2 =
FN(i)
|NZ2(i)| , i = 1, . . . , c (4)

where FP (i) and FN(i) are the false positives and false negatives, respectively.
That is, FP (i) is the number of samples from other classes that were classified
as being from the class i in Z2, and FN(i) is the number of samples from the
class i that were incorrectly classified as being from other classes in Z2. The
errors ei,1 and ei,2 are used to define

E(i) = ei,1 + ei,2, (5)

where E(i) is the partial sum error of class i. Finally, the accuracy Acc of the
classification is written as

Acc =
2c−∑c

i=1 E(i)
2c

= 1−
∑c

i=1 E(i)
2c

. (6)

3.1 Effectiveness of the Classifiers Before Learning with the Errors

We used the well known LibSVM [5] software as the SVM implementation. This
package implements optimization procedures to increase accuracy, at the price
of a higher computational time, and uses the Radial Bases Function (RBF) as
the kernel to map the samples in the feature space to a higher dimensional space.

We executed the OPF and SVM algorithms 10 times to compute their accura-
cies (Equation 6), using different randomly selected training Z1 and test Z3 sets.
The results are displayed in the following format: x±y(z), where x, y and z are,
respectively, the mean accuracy and its standard deviation and the mean Kappa
coefficient [6]. The training (Z1) and test (Z3) sets percentage were, respectively,
50% and 50% for all datasets used. Recall that the evaluation set (Z2) is only
used in the next experiment. The Table 1 presents the results.
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Table 1. Results obtained before learning with the errors. The word OWN remains
to the own database descriptor.

Database (descriptor) OPF SVM

MPEG-7 (FD) 0.67±0.01(0.33) 0.60±0.01(0.20)

MPEG-7 (MS) 0.83±0.01(0.66) 0.83±0.01(0.66)

Corel (CHIST) 0.84±0.01(0.71) 0.83±0.01(0.70)

WBC (OWN) 0.94±0.01(0.96) 0.84±0.17(0.69)

Cone-torus (XY) 0.84±0.01(0.68) 0.83±0.02(0.67)

Saturn (XY) 0.74±0.01(0.64) 0.84±0.04(0.67)

Petals (XY) 0.98±0.01(0.97) 0.98±0.01(0.97)

Boat (XY) 1.0±0.0(1.0) 1.0±0.0(1.0)

Note that the OPF classifier achieved 5 wins, 2 ties and just 1 lose. Note also
that the OPF outperformed SVM in about 10% on the MPEG-7 dataset using
the FD descriptor and on the WBC dataset.

3.2 Effectiveness of the Classifiers by Learning with the Errors

The idea of this section is to evaluate the ability of learning with the errors in a
third evaluation set Z2. For randomly selected instances of Z1, Z2 and Z3, the
classifiers are trained on Z1 and tested on Z2 during a few iterations that replace
samples of Z1 by misclassified samples of Z2. After 10 iterations, the classifiers
are finally tested on Z3. This process is also repeated 10 times to measure the
average accuracies of the classifiers. The learning procedure aims to capture from
Z2 the most informative samples.

The algorithm outputs a learning curve over T iterations, which reports the
accuracy values of each instance of the classifier during learning (Figure 2), and
the final OPF/SVM classifier. It is shown in Algorithm 2.

Algorithm 2. – Learning Algorithm

Input: Training and evaluation sets labeled by λ, Z1 and Z2, number T of
iterations, and the pair (v, d) for feature vector and distance compu-
tations.

Output: Learning curve L and the best OPF/SVM classifier.
Auxiliary: False positive and false negative arrays, FP and FN , of sizes c, list

LM of misclassified samples and variable Acc.

1. For each iteration I = 1, 2, . . . , T , do
2. LM ← ∅
3. Train OPF/SVM with Z1.
4. For each class i = 1, 2, . . . , c, do
5. FP (i) ← 0 and FN(i) ← 0.
6. For each sample t ∈ Z2, do
7. Use the classifier obtained in Line 3 to classify t with a label L(t).
8. If L(t) �= λ(t), then
9. FP (L(t)) ← FP (L(t)) + 1.
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10. FN(λ(t)) ← FN(λ(t)) + 1.
11. LM ← LM ∪ t.
12. Compute Acc by Equation 6 and save the current instance of the classifier.
13. L(I) ← Acc
14. While LM �= ∅
15. LM ← LM\t
16. Replace t by a randomly object of the same class
17. in Z1, under some hard constraints.
18. Select the instance of the classifier with highest accuracy L(I)

The Learning algorithm can be used for both OPF and SVM classifier, by
changing Lines 3 and 16 − 17. For OPF, Line 3 is performed by computing
S∗ ⊂ Z1 as in Section 2.1 and the predecessor map P , label map L and cost
map C by Algorithm 1. The classification is done by finding s∗ ∈ Z1 that satisfies
Equation 2, i.e., P (t) = s∗ and L(t) ← L(s∗). The constraints in Lines 16 − 17
refer to not use the prototypes in the sample interchanging process between Z1

and Z2. For SVM implementation we use the LibSVM package [5] with Radial
Basis Function (RBF) kernel and parameter optimization in Line 3. The hard
constraints in Lines 16 − 17 refer to not use the support vectors in the sample
interchanging process.

A different version of the learning algorithm for OPF was presented in [21].
The algorithm computed a relevance degree for each sample of Z1, based on the
numbers of right and wrong classifications on Z2 involving that sample in the
optimum path. The relevance degree of a sample was computed by subtracting
the number of wrong classifications from the number of right classifications in-
volving that sample. Samples with negative degrees were considered irrelevant,
and so selected for the interchanging process. The idea was to eliminate outliers
from Z1, since these samples are usually irrelevant. The present version is sim-
pler and faster than the previous one — i.e., it does not need to compute the
relevance degrees of all nodes in Z1. Nevertheless, it has shown higher accuracies
in all tested datasets except sometimes for Brain [7].

The Z1, Z2 and Z3 sets percentage were, respectively, 20%, 30% and 50%, for
all databases used. Table 2 presents the results. Note that these accuracies were
obtained over the unseen test set Z3. Again, we executed the OPF and SVM
algorithms 10 times to compute their accuracies (Equation 6). The results were
displayed in the same format used in the previous section.

After the learning procedure, the OPF classifier achieved 6 wins and 2 ties.
Note that all accuracies were increased, both for OPF and SVM. Recall that
the proposed learning approaches can improve the performance of the classifiers
over the Z3 set without increasing the training set size.

We also computed the execution time of the methodologies. Table 3 displays
these values in seconds. The OPF classifier was, on average, 118.315 times faster
than SVM. Note that the SVM algorithm had a slow performance due to the
fact of the optimization procedure implemented in the LibSVM [5]. However, by
removing the optimization procedures, this processing time could be decreased.
In turn, this could produce lower classification rates.
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Fig. 2. OPF learning curves for MPEG-7 Shape Database using the Fourier Shape
descriptor (FD) and the Multiscale Fractal Dimension (MS). These accuracies were
obtained over the evaluation set Z2.

Table 2. Results obtained by learning with the errors. The word OWN remains to
the own database descriptor.

Database (descriptor) OPF SVM

MPEG-7 (FD) 0.75±0.03(0.51) 0.62±0.01(0.27)

MPEG-7 (MS) 0.88±0.02(0.76) 0.84±0.01(0.69)

Corel (CHIST) 0.86±0.03(0.73) 0.84±0.01(0.71)

WBC (OWN) 0.98±0.01(0.96) 0.96±0.01(0.92)

Cone-torus (XY) 0.92±0.01(0.84) 0.85±0.02(0.68)

Saturn (XY) 0.93±0.02(0.87) 0.84±0.03(0.67)

Petals (XY) 1.0±0.0(1.0) 1.0±0.0(1.0)

Boat (XY) 1.0±0.0(1.0) 1.0±0.0(1.0)

Table 3. Classifiers execution times

Database (descriptor) OPF SVM

MPEG-7 (FD) 1.17 260.77

MPEG-7 (MS) 1.15 250.76

Corel (CHIST) 2.09 270.73

WBC (OWN) 0.73 127.38

Cone-torus (XY) 0.5 28.01

Saturn (XY) 0.31 15.02

Petals (XY) 0.29 14.11

Boat (XY) 0.29 14.11
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4 Conclusion

The OPF classifier is a new promising tool in the pattern recognition and corre-
lated fields, which creates a discrete optimal partition of the feature space and
presents four new advantages related to the methods above: i) absence of pa-
rameters, ii) achieves zero classification errors in the training phase without data
over-fitting (Table 1), iii) faster performance and iv) can deal with multi-class
classification problems without modifications or extensions.

We conducted experiments in several databases with different characteristics,
such as shape, color and synthetic data. The OPF algorithm outperformed the
SVM approach in 7 out of the 8 used databases. We also proposed a simple but
efficient learning algorithm, which allows the recognizer to learn with its own
errors. The results showed that after the learning algorithm the accuracy rate of
the OPF and SVM was higher than before the use of the learning methodology.
We also showed that OPF algorithm is much faster than the support vector
machines approach, which is a very interesting advantage in large databases.
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Abstract. This paper deals with the widely studied problem of decom-
position of digital shapes. The Tangential Cover [7] is a powerful tool
that computes the set of all maximal segments of a digital curve. In pre-
vious works [4], the Tangential Cover has been extended to a new class
of “thick digital curves”. This extension brought up some major issues.
In the present paper, we generalize even more the notion of Tangential
Cover, in order to fix those issues. We propose a new relevant way of
representing thick digital curves, as sets of consecutive triangles. Then,
we study the use of this representation to define a generalized Tangential
Cover, and we show some results produced by our technique.

1 Introduction

The decomposition of digital shapes into specific subparts is an important task,
often among the first stages in image processing, pattern recognition or shape
analysis. One of the main goals is to obtain methods as generic as possible, while
maintaining low time complexities and providing robustness to noise. Classically,
the primitives used are digital straight segments (DSS). Those are the object of
many publications, among which the Tangential Cover [5]. The task we are occu-
pied with is the generalization of the Tangential Cover to primitives other than
DSS. In particular, we extend it to a new class of “thick digital curves”. Those
allow the handling of irregularities inherent to digital shapes. In the present ar-
ticle, we exhibit our new method to manage this extension, using triangulations
of thick digital curves. Our generalized Tangential cover can be used to manage
other primitives than straight or approximately straight ones.

We start off this article by recalling the context of this study, providing the
original definition of the Tangential Cover and its direct application to DSS.
Then, we generalize the notion of Tangential Cover. We furnish a definition of
thick digital curves, and adapt the generalized Tangential Cover to such curves.
We then justify our use of triangulations, and the issues emerging from it. We
present the different elements obtained when triangulating thick digital curves.
Then, we propose an algorithm to obtain the requisite total ordering on the set
of triangles. Finally, we exhibit results of our technique, conclude and give some
perspectives regarding the cleaning of noisy curves.
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2 Definitions And Context

2.1 The Tangential Cover

Definition 1. A discrete curve C is an ordered set of integer points (p1, . . . , pn)
such that the real polygonal line passing through them, in order, is a simple
polygonal line.

The curve is closed when the next point of pn is p1. For a discrete curve C, we
will denote by C the real polygonal line passing through the points of C.

The notion of maximal digital straight segment (maximal DSS) plays a par-
ticular role in our study. We refer to the book [8] for basic properties of DSS.
For any i and j in Z, let us denote by [i, j] the integer interval corresponding to
{k ∈ Z, i ≤ k ≤ j}. We consider, in the sequel, a discrete curve C = (p1, . . . , pn).

Definition 2. A set P = (pi, . . . , pj) is called a maximal digital straight segment
(DSS) if and only if P is a DSS with ∀k ∈ [i, j], pk ∈ P and maximal with respect
to inclusion of subsets of C.

Obviously, using the order of the points in C, a DSS P is maximal if and only if
both sets P ∪ {pj+1} and P ∪ {pi−1} are not DSS.

Definition 3. The tangential cover T (C) of the curve C is the set of all maximal
DSS of C.

The tangential cover has proven itself a powerful tool for studying digital shapes
[5]. Intrinsic properties of the maximal DSS have been used in [7] and [6] to in-
crementally build the tangential cover with a linear complexity. The incremental
construction is quite simple. Points of C are added in order to the front end of
a current DSS. According to definition 2, when the test fails, the current DSS
is maximal. Points are then deleted from the rear end of the DSS, until the ad-
dition of a new point is valid (Fig. 1, left). The process stops when all maximal
DSS have been constructed. The resulting tangential cover T (C) is a canonical
representation of closed digital curves. In order to graphically represent this con-
struction, T (C) is mapped into the class of circular arcs graph, as seen in [5].

Fig. 1. Left: additions and deletions performed on a DSS. Right: a chromosome dig-
ital shape; the set of its maximal segments; its tangential cover, where to set apart
overlapping arcs, the radius is increased or decreased accordingly.
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The tangential cover has been used to determine the polygonalization of discrete
curves with the least number of vertices. This problem is known as min-DSS [8].
It is solved in [6], using the circular arcs graph rather than the original curve.
There, the tangential cover either uses standard or naive discrete segments based
on the arithmetical definition of Reveillès [11].

2.2 The Generalized Tangential Cover

In order to apply the notion of tangential cover in other contexts than the one
of DSS, we now extend it in the most general possible way.

Let S be a finite set composed of the elements (e1, . . . , en) that we suppose
to be totally ordered and thus numbered by integer indices. We first define
the notion of subpart. To do this, we introduce a predicate P with value in
{true, false}.
Definition 4. A valid subpart T of the set S regarding a given predicate P is a
set (el, . . . , er) of elements of S, such that l ≤ r, ∀k ∈ [l, r], ek ∈ T and P(T ) is
true.

The subparts of S are ordered by inclusion which is however a partial order.
But using the order of the elements of S, we can notice that a subpart T will be
maximal if and only if P(T ) = true and neither T ∪ {er+1} nor T ∪ {el−1} are
valid for the predicate P . This is exactly the same property as for the DSS case.

Definition 5. The (generalized) Tangential Cover of S, with respect to P, is
the set of all valid maximal subparts of S.

When the elements correspond to the integer points of C and when P is the
predicate “to be a DSS”, our new definition leads to the usual notion of tan-
gential cover. The latter was used to solve the min-DSS [8] problem. Here, the
generalized Tangential Cover may be used to solve a more general so-called min-
subpart problem, the generalization being the nature of the subparts and the
predicate of maximality.

2.3 Thick Digital Curves

We wish to compute the tangential cover of thick digital curves. Informally, a
thick digital closed curve is a set of integer points bounded by two distinct thin
digital Jordan curves, one being strictly included into the other. We will refer to
the former as the inner curve, and to the latter as the outer curve.

Definition 6. Let Cint and Cext be two closed digital curves such that C◦int ⊂
C◦ext, and C◦int �= ∅, where the notation C◦ denotes the interior of the curve C (see
definition 1). The set of points between Cint and Cext (both included) is called a
thick digital closed curve.

Thin digital curves are particular thick digital curves where the two sets Cint

and Cext are equal. Figure 2 represents a thick digital curve. Our definition 6 is
related to the notion of “simple polygons with one hole”.
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Fig. 2. A thick digital closed curve

3 Extension to Thickness

Let us now extend the tangential cover to thick digital curves, according to defi-
nition 6. First, we notice that a total ordering on the elements of the input curve
is needed in order to compute its tangential cover. This means that notions of
previous and next must make sense for each atomic element. Second, a predi-
cate must be defined to obtain valid subparts of the thick curve. We currently
postpone the problem of a total ordering and focus on the predicate.

As a predicate, we use the notion of “α-thickness” [1], which is equivalent to
the notion of “blurred segments”, introduced in [3].

Definition 7. A set of points is a subset of an α-thick digital line if and only
if its convex hull has an isothetic thickness inferior to α.

The isothetic thickness of a convex set is the minimum between its vertical and
its horizontal thicknesses (see figure 3, left). The vertex for which the isothetic
thickness is reached gives us an important information regarding the convex
hull’s direction. The facing edge is the slope of the convex set (see figure 3,
right). An algorithm that computes the isothetic thickness of a given convex
hull in logarithmic time at worst is given in [1]. If the isothetic thickness of the
convex hull of a set of elements is inferior to a fixed α value, then the set is a
valid subpart of the input thick digital curve. Now if this same set is maximal
(cannot be extended left nor right), then it belongs to the thick tangential cover.
This implies of course that convex hull of elements should be defined.

In order to build the set of all maximal subparts of a thick digital curve,
we need to compute its successive convex hulls. According to the construction
process of the tangential cover which we described in section 2.1, this means
that we need to add and subtract points from convex hulls. Managing dynamic
convex hulls is a difficult problem, and known algorithms (such as [10]) remain

Fig. 3. The isothetic thickness of this convex hull is the minimum between its vertical
(VT) and horizontal (HT) thicknesses
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Fig. 4. A problem occurring when trying to compute maximal segments on a thick
digital curve

too costly in time complexity for our usage. We observe that our construction
process only requires deletions on the rear end and insertions on the front end
of convex hulls. Thus, we need an incremental and decremental method rather
than an actual dynamic one, where insertions and deletions may be performed
in the middle of the convex hull. Buzer proposed such an approach in [2], based
on Melkman’s famous algorithm [9]. Its time complexity is linear in the size of
the input simple polygonal chain.

The recent work [4] allow us to plug the isothetic thickness computation al-
gorithm to this incremental/decremental management of convex hulls. Such an
assembly is not trivial at all since the two methods were not designed to work
together. The resulting time complexity is O(n log n). Successive convex hulls
of the curves subparts are built, and then their isothetic thicknesses are tested
to determine if their validity. Hence, the desired thick tangential cover is built.
However, in [4], a thick digital curve was only represented by the points of the
inner and the outer bounding curves. A strategy was proposed to add points
alternatively from one of the two curves but this leads to the generation of sub-
parts that do not belong to the thick curve (see Fig. 4 right). A solution based
on the control of the speed on the inner and the outer curve was proposed in [4]
but this does not solve all problems and cannot be used to provide a generalized
approach. The problem of this study was the inexistence of a total ordering as
well as an imprecise definition of the elements of computation.

One fact was missing in [4]: the management of the interior (in the weak
sense where boundaries are included) of the thick digital curve. The only way
to overcome this serious drawback is to look at the curve as a series of subparts
based on the two bounding curves and only representing its interior. To achieve
that, a triangulation of the thick curve (seen as a polygon with one hole) appears
to us as the best candidate. Then, the objects added to the tangential cover would
not be points from both bounding curves, but triangles. As the triangles lie on
the boundaries of the thick digital curve and entirely cover its interior, this is
the most accurate and most efficient representation. So, in the sequel, we first
present a precise study of our triangulations and then provide a way to construct
a total ordering of the triangles. As a result, the generalized tangential cover is
perfectly defined on thick digital curves.
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4 Triangulation

In order to better handle the interior of thick digital curves, we want to triangu-
late those. There exist several ways to compute triangulations of such polygons.
We experimented some of them, and finally chose a method based on constrained
Delaunay triangulation [12]. Its main benefit regarding our usage is to avoid the
creation of narrow triangles. Moreover, no new points (Steiner points) are added
and all triangles in the resulting triangulation have all their vertices on the in-
ner, on the outer or on both curves. Given an input of an inner and an outer
curve, the algorithm returns a set of adjacent triangles. Let us have a look at all
possible elements of such a triangulation (see Fig. 5).

Fig. 5. A triangulation for a given thick shape. White triangles are “heterogeneous”,
grey ones are “homogeneous”. Dark grey triangles lie strictly on the outer border, light
grey ones lie on the inner border.

We wish to take care of the interior of the thick curve, and not only of both of
its bounding curves. Intuitively, to achieve that goal, the subparts that we create
must not entirely lie on only one bounding curve. However, in the general case,
this is not possible. Triangles whose vertices all belong to the same curve (inner
or outer) are called homogeneous. Other triangles are called heterogeneous. For
our usage, which is to find maximal subparts of the curve regarding a predefined
predicate, we will restrain the validity of the subparts based on the triangles and
their homogeneity.

Definition 8. Let a thick digital curve C, and its associated triangulation T =
{T1, T2, ...Tn}. A valid subpart of C is a set of adjacent triangles {Ti, ...Tj} which
contains at least one heterogeneous triangle.

A set of adjacent homogeneous triangles only lie by definition on one of the
bounding curves. We consider that such a set is not a valid subpart of the
curve. Indeed, it only represents an excrescence. The adjacency relation between
triangle is the edge adjacency.

Definition 9. Two triangles are considered neighbors if and only if they share
one edge.

For each connected non trivial subset of a triangulation, each triangle has at least
one neighbor. It is obvious that there can be at most three. Any heterogeneous
triangle has at least two neighbors. It may also have three neighbors. In such a
case, we prove that exactly one of its neighbor is homogeneous.
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Fig. 6. Illustration for proof 4

Fig. 7. Triangulation between the inner (i) and outer (o) curves. Left, an heterogeneous
3-N triangle. Right, two consecutive examples of homogeneous 3-N triangles (dark
grey), which lead to two pockets (light grey) apiece. Finally, there are three dead-end
triangles.

Lemma 1. An heterogeneous triangle with three neighbors has exactly one ho-
mogeneous neighbor.

Proof. We recall that the curves interior is not empty: C◦int �= ∅. Let us have a
look at figure 6 (left). If the neighbor emerging from the ”I-I” edge was hetero-
geneous, this would mean that the inner curves interior would cross a triangle,
which is impossible since, in our method, we only triangulate the interior of the
thick curve. The same goes for the symmetric situation (figure 6, right) where
the inner curve would not strictly be included into the outer one. Thus the tri-
angle has one homogeneous neighbor and this is necessarily the only one. 	


In the sequel, we call k-N triangle, a triangle with exactly k neighbors. The clas-
sification of homogeneous triangles is easy : 3-N homogeneous triangles have at
least two homogeneous neighbors, 2-N homogeneous triangles have at least one
homogeneous neighbor, 1-N homogeneous triangles can have either a homoge-
neous or a heterogeneous neighbor.

An homogeneous triangle is always part of an homogeneous subset of the
curve, which we will call a pocket of the curve. 3-N homogeneous triangles are
shared between several pockets. Such pockets lead inevitably to one 1-N homo-
geneous triangle, which we will call a dead-end triangle. We refer to figure 7 for
all definitions. Dead-end triangles and pockets are related to heterogeneous 3-N
triangles. Indeed, if it was not the case, then we could make a path in the trian-
gulation only composed of homogeneous triangles. As the thick curve is finite,
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we would obtain that all triangles of the triangulation are homogeneous, which
is impossible. Thus, we alway reach a heterogeneous triangle by following the
adjacency from an homogeneous triangle.

As stated in section 3, the computation of a curves tangential cover requires
a total ordering on the elements of the curve. In order to use the set of triangles
as an input to the tangential cover algorithm, it is mandatory to build such a
total ordering between the triangles produced by the triangulation.

5 Total Ordering

We gave all possible configurations of the obtained triangles in section 4. We will
denote by HET (resp. HOM) heterogeneous (resp. homogeneous) triangles. In
the case of closed curves, the resulting ordering will be circular, thus the choice
of the starting triangle is not primordial. We first determine an orientation (let
us for example choose the counterclockwise orientation, but the result would still
be valid for the clockwise one). Then we create the ordered list of edge-neighbors
for each triangle, regarding the chosen orientation. For 2-N triangles, the choice
of direction is trivial. Indeed, the next triangle is the first neighbor according to
the counterclockwise orientation. The difficult part is to determine an ordering
when cases of 1- or 3-neighboring appear. We proved in section 4 that 1-N HOM
triangles, the dead-end, may only be encountered after the traversal of a 3-N
HET triangle.

Let us first recall that there always exists an HET triangle in a thick digital
closed curve, since all vertices of the triangulation are points from the inner and
outer curves (see section 4). If there exist 2-N HET triangles, we choose any of
those as the starting element. Otherwise, we start with any 3-N HET triangle,
getting rid of one of its associated pocket, which we process afterwards. This way,
we can always start with a 2-N HET triangle, for which the direction of traversal
is obvious. We follow the adjacency path until a 3-N HET triangle is encountered.
Then, exactly one of its neighbors is homogeneous (lemma 1). We stated in
section 4 that such a triangle is always part of one or two “pocket(s)” of the
curve, which lead to dead-end triangles. Let us notice that there is no possibility
of constructing a total ordering of adjacent triangles without duplicating some
triangles. Moreover, with the α-thick predicate, since convex hull are invariant
when duplicating triangles we will not introduce new subparts. In the general
case, only the triangles of some pockets are inserted at most three times in the
list. This is a logical behavior since pockets correspond to irregular branches of
the curve that must be described. Thus, the strategy is to explore the pockets in
depth, and to go back the same way to the 3-N HET that generated the pocket.
Meanwhile, we duplicate all encountered triangles.

As for 3-N HOM triangles, the strategy is not different. We previously stated
that such triangles conduct to two pockets. Using counterclockwise orientation,
we determine an order between those two pockets. We then explore each one forth
and back. This strategy can be seen as a Depth-First Search in a tree, that would
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T0 ← Find or Create a 2-neighbored triangle;
T ← FirstNeighbor(T0);
while T �= T0 do

if T is Heterogeneous then
if T is 2-neighbored then

T ← FirstNeighbor(T);
else

T ′ ← HomogeneousNeighbor(T);
if Link(T,T’) is marked then

T ← FirstHeterogeneousNeighbor(T);
else

Mark(Link(T,T’)); T ← T ′;

else
if T is 2-neighbored or 3-neighbored then

T ′ ← FirstFreeLinkedNeighbor (T );
Mark(Link(T,T’)); T ← T ′;

else
T ′ ← Neighbor(T);
Mark(Link(T,T’)); T ← T ′;

end
Process last pocket if necessary

Algorithm 1. Total Ordering

go back after encountering leaves. When all pockets emerging from a 3-N HET
have been explored, the path continues with the heterogeneous neighbor that has
not been visited yet. Our algorithm is detailed in pseudo-code in algorithm 1.

Preliminary to the execution of this algorithm, a list of every neighbor T ′ of
each triangle T is created. This list is ordered using counterclockwise direction.
Then, during the execution, when a neighbor T ′ is chosen from T , we put a mark
on it. Thus, we can not enter in a previously seen pocket.

6 Results

First, let us exhibit the results of our total ordering on a discrete shape (see Fig.
8, right). The obtained path seems really natural, no conflicts are encountered
and all difficult cases are solved using algorithm 1.

We now plug the triangulation onto the tangential cover algorithm. Let us
take a look at Fig. 9. The α parameter is fixed to 2 pixels. Fig. 9a) represents
the ordering between the triangles. Then, successive maximal subparts are built.
Crossed triangles are the ones that have been suppressed from the previous
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Fig. 8. Left : the course for homogeneous 3-neighbored triangles. Right : Total ordering
obtained for a triangulation of a closed thick digital curve.

Fig. 9. The building of the tangential cover on a small part of a closed thick digital
curve. Successive maximal subparts are represented in grey. An invalid maximal subpart
is drawn in black.

subpart in order to add a new triangle, while maintaining an isothetic thickness
inferior to α (our generalized tangential cover predicate of validity). Starred tri-
angles represent elements which can not be added to the current subpart, in
order to keep up with the validity of the predicate. An interesting case occurs on
Fig.9e). The obtained maximal subpart only consists in homogeneous triangles,
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Fig. 10. Some polygonalizations of the thick chromosome shape. Thickness parameter
is fixed to α = 2 pixels (left) and α = 3.2 pixels (right). Light grey and dark grey
represent α-thick subparts. Bi-colored triangles are shared by two consecutive subparts.
α-disconnected triangles are represented in white.

all lying on the outer curve. According to definition 8, it is not a valid subpart
(9f)). Therefore, it is rejected from the tangential cover as an irrelevant excres-
cence of the curve, regarding α-thickness. The recognition may then carry on
with the next subparts. Let us also remark that subpart 9g), although valid, is
not maximal since it is included in subpart 9d). Thus, it does not belong to the
tangential cover neither. There, the maximal subpart following 9d) is 9h). We
notice that four triangles located in the upright pocket do not appear at all in
the resulting tangential cover. They are α-disconnected.

Let us now have a look at figure 10. It shows some polygonalizations obtained
from our tangential covers. For α = 2 pixels, there are 16 subparts, and one
triangle is α-disconnected. When α is increased to 3.2 pixels, all subparts are
connected, with a total of 7 subparts. This illustrates the importance of the
choice of the α value which merely corresponds to the tolerance on the allowed
noise, as well as the desired thickness of the decomposition.

7 Conclusion

We extend the notion of Tangential Cover to thick digital curves, essentially
by introducing a predicate with boolean value to represent acceptation of a
geometric primitive. We provide a way to build a total order on the elements of
thick digital curves. We show that triangles are good candidates for such curves.
Finally, we show some results produced by this technique. The computation of
the generalized Tangential Cover has a time complexity of O(n log n), n being
the size of both bounding lines of the curve. This time complexity is very low
regarding the total size of the input shape, when considering points in the interior
of the thick digital curve. In future works, we plan to study the size and the
behavior of the obtained tangential covers, by varying the α parameter. Also,
the fact that we automatically eliminate non-relevant parts of the curve could
bring along a new method for cleaning noisy curves.
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Abstract. We propose in this paper a segmentation process that can
deal with noisy discrete objects. A flexible approach considering arith-
metic discrete planes with a variable width is used to avoid the over-
segmentation that might happen when classical segmentation algorithms
based on regular discrete planes are used to decompose the surface of the
object. A method to choose a seed and different segmentation strategies
according to the shape of the surface are also proposed.

1 Introduction

Three-dimensional discrete objects are widely used in medical area. Due to their
internal structure and their huge size, the manipulation of such objects is not an
easy task. Rendering algorithms for instance, cannot apply usual techniques to
obtain a nice visualization of the objects. A general idea to address this problem
is to transform the discrete volume into a Euclidean polyhedra. The segmentation
of the border of such objects into discrete primitives is thus a natural first step
and several studies have been led on the subject.

In [6], L. Papier and J. Françon propose a segmentation of the surface of a
discrete object into pieces of standard arithmetic discrete planes. These standard
planes are recognized using a Fourier-Motskin elimination algorithm [7] and
are forced to be homeomorphic to a topological disk in order to be used in
a polyhedrization process. They state that the resulting segmentation heavily
depends on the choice of the seed to start the recognition of a new face and the
tracking order of the points chosen for enlarging the current face, but do not
address these problems.

In [2], J. Burguet and R. Malgouyres have developed a polyhedrization al-
gorithm based on the computation of a topological Voronöı diagram. Seeds are
distributed on the surface of the discrete object according to its curvature [9]
and a thinning algorithm is used to generate the skeleton of this surface without
the seeds. The resulting Voronöı regions can then be seen as a segmentation of
the surface.

In the framework of surface area estimation [8], R. Klette and H.J. Sun have
proposed a segmentation of the surface into digital planar segments (DPS) – which
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are actually pieces of standard discrete planes. To incrementally check whether a
set of points is a DPS, they compute the convex hull of this set to retrieve a specific
pair of parallel planes for which the main diagonal distance has to be less than√

3. A breadth-first search of the surfel graph representing the surface is used to
incrementally add points into the DPS.

In [13], I. Sivignon et al. have compared different tracking processes to de-
compose the surface of a discrete object into naive discrete planes. A dual-space
approach is used to incrementally recognize the pieces of planes [15]. In [14] the
authors have also studied the relation between a segmentation into naive and
standard discrete planes depending on the considered surface definition.

Although these methods are reversible and behave well with regular discrete
objects, they might lead to an over-segmentation with noisy ones. In this paper
we try to be more flexible and address the problem by considering a segmentation
into pieces of discrete planes with a variable width. A first pre-processing step
is done to compute geometric features of the surface of a possibly noisy discrete
object. We then use these goemetric features to take into account the shape
of the object to choose the seeds and to guide the incremental growth of the
segments.

In section 2, after recalling the definition of blurred pieces of discrete planes,
we summarize results from [11] about geometric features for noisy discrete sur-
faces. The different steps of the segmentation process are then described in sec-
tion 3, followed by some results on noisy and non-noisy objects. The paper ends
up with a conclusion and some perspectives in section 4.

2 Background

We recall in this section the definition of a width-ν blurred piece of discrete
plane, an arithmetical discrete primitive introduced in [10], that allows to deal
with noisy discrete data. Relying on this primitive, we present the notion of a
width-ν patch centered at a border point of a discrete objet and some features
of the border obtained from this patch. More details about the construction of
the patch and the study of different features of the border can be found in [11].

2.1 Blurred Pieces of Discrete Planes

One can see a blurred piece of discrete plane as an arithmetic discrete plane for
which some points are missing. More formally:

Definition 1. Let N be a norm on R
3 and E a set of points in Z

3. We say that
the discrete plane P(a, b, c, μ, ω)1 is a bounding plane of E if all the points of
E belong to P, and we call width of P(a, b, c, μ, ω), the value ω−1

N(a,b,c) .
A bounding plane of E is said optimal if its width is minimal.

1 An arithmetic discrete plane P(a, b, c, μ, ω) is the set of integer points (x, y, z) veri-
fying μ ≤ ax+ by+ cz < μ+ω, where (a, b, c) ∈ Z

3 is the normal vector of the plane.
μ ∈ Z is named the translation constant and ω ∈ Z the arithmetical thickness.
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(a) (b)

Fig. 1. (a) A width-3 blurred piece of discrete plane and (b) a piece of its optimal
bounding plane P(4, 8, 19, −80, 49), using the Euclidean norm

Definition 2. A set E of points in Z
3 is a width-ν blurred piece of discrete

plane if and only if the width of its optimal bounding plane is less than or equal
to ν.

Two recognition algorithms of blurred pieces of discrete planes have been pro-
posed in [10]. The first one considers the Euclidean norm and, for a set of points
P in Z

3, it solves the recognition problem by using the geometry of the convex
hull of P . The second one considers the infinity norm and uses methods from
linear programming to solve the recognition problem.

Thereafter, we denote by Ob a possibly noisy 6-connected discrete object. We
call surface or border of Ob the set of points Bb which have a 6-neighbor that
does not belong to Ob. All the results we present on this type of objects have
been obtained by considering the geometrical approach which uses the Euclidean
norm.

2.2 Width-ν Discrete Patches

If we are working on a noisy discrete surface and need to extract some of its
local geometric features, such as the normal vector or the curvature, it is wise to
use estimators that take into account the irregularity of this surface to compute
these kinds of features. A way to achieve this task at a point p of the surface is
to gather the information of points lying in an extended neighborhood of p. The
notion of patch we present hereafter takes place in this framework, considering
an adaptative neighborhood around p.

Definition 3. Let Bb be the border of a discrete object, p a point in Bb and ν
the greatest real value allowed. Let d be a distance. At each point q ∈ Bb we
associate the weighting factor dp(q) = d(p, q). We call width-ν patch centered
at p, and denote by Γν(p), a width-ν blurred piece of discrete plane incrementally
recognized from p by adding points q of Bb following the increasing values of dp(q).

About the Incremental Recognition: We construct a width-ν patch centered
at p using the incremental recognition algorithm of blurred pieces of discrete
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(a) (b)

Fig. 2. An example of width-2 patches spread on the surface of different noisy objects.
(a) A sphere of radius 20 and (b) a cube of edge 25.

planes introduced in [10]. We add the points following the increasing values of
dp and, as soon as the width of the blurred piece of discrete plane becomes
greater than ν, we stop the recognition process.

About the Distance d: To uniformly spread the patch in all directions, the
best solution would be to use a geodesic distance. Nevertheless, for efficiency,
we have chosen to rely on a distance based on a chamfer mask 〈3, 4, 5〉 which is
a good approximation of the geodesic distance [1]. The aim is to have a well-
balanced patch around p which looks almost circular. With this method we
obtain patches like those in Fig. 2.

2.3 Patch Features

A patch Γν(p), as previously defined, characterizes the planarity of the surface
around p (with respect to the width ν). Thus, the more the patch is spread, the
less the surface around p is bent.

In addition, if the growth of Γν(p) stopped, it means that the close neighboring
points outside Γν(p) would bend the patch too much if they were added. In that
case the patch could no longer be regarded as flat. Therefore, it is possible to
deduce a conformation of the discrete surface around p by studying the patches
centered along the points of the outline of Γν(p).

The following definitions give a formal quantization of all these observations.

Width-ν Normal. With the previous intuition we can see that the normal
vector of Γν(p) is a good estimation of the normal at p. Thus, assimilating the
normal vector of Γν(p) to the normal of the surface at p, we define a normal
vector estimator for each point of the surface of a possibly noisy discrete object.

Definition 4. Let Bb be the border of a discrete object and p a point of Bb. We
call width-ν normal at p the normal vector

−→nν(p) = −→n (Γν(p))

where −→n (Γν(p)) is the normal vector of the patch Γν(p).
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Width-ν Patch Area. Given a Euclidean surface S and its normal vector field
{−→n }, in the continuous space we can compute the area of S with the formula:

A(S) =
∫

S
−→n (s) ds

The discrete version of this equation given in [4] has been adapted as follows to
compute the area of the surface of a width-ν patch:

EA(Γν(p)) =
∑

s∈SΓν(p)

−→nν(p).−→n el(s) = −→nν(p).
∑

s∈SΓν(p)

−→n el(s)

where SΓν(p) is the set of surfels2 of the patch surface, and −→n el(s) the elementary
normal vector of s.

Shape Estimator. An estimator that enables the characterization of the shape
(concave, convex or flat) of the surface around a border point of a possibly noisy
discrete object has been developed. It is based on the study of the conforma-
tion of the patches which are centered on points belonging to the outline of
Γν(p).

Definition 5 (Patch Outline). Let Bb be the border of a discrete object Ob.
We denote by Sb the set of surfels of Bb which are incident to a point that does
not belong to Ob, and SΓν(p) the subset of Sb that belongs to Γν(p). A point
q belongs to the outline of Γν(p) if the voxel representation of q has a surfel
s ∈ SΓν(p) and if there exists a surfel s′ ∈ Sb \ SΓν (p) such that s and s′ are
adjacent by edge.

Let C be the set of points that belong to the outline of Γν(p). Our shape estimator
of the surface around a point p is then given by the formula :

Fν(p) =
1
|C|

∑

∀q∈C

̂(−→nν(p),−→nν(q)) · EA(Γν(q))
EA(Γν(p))

where ̂(−→nν(p),−→nν(q)) is the oriented angle value between the two normal vectors.
So, the estimator Fν(p) is a weighted mean of the angle values between −→nν(p)
and the −→nν(qi)1≤i≤|C|.
Fν(p) is positive when the surface around p is rather convex and Fν(p) is

negative when the surface around p is rather concave. An increasing value of
|Fν(p)| means that the surface around p is more strongly concave or convex.
Moreover, if Γν(p) is big, a value Fν(p) close to zero means that the area around
p is almost flat (according to the width ν we chose). If Γν(p) is small, then the
area around p is strongly distorted, but in a way we can neither qualify concave,
nor qualify convex (a saddle point for instance).

2 Faces of a voxel are called surfels.
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(a) (b)

Fig. 3. Segmentation of (a) a regular cube of edge 25 and (b) a noisy counterpart
by using the DSD algorithm (http://liris.cnrs.fr/isabelle.sivignon/DSD.html)
proposed by I. Sivignon [13,14].

3 Segmentation

3.1 Introduction

The segmentation of a tridimensional discrete object we will describe in this
section consists in partitioning the border of the object into pieces of discrete
planes. Some studies have been led on the subject [8,13,14,2,6] but they all
consider regular planes with a fixed width (mainly naive or standard arithmetic
discrete planes). Although these methods give good results with regular discrete
objects (Fig. 3(a)), it is not always the case when we have to deal with irregular
or noisy discrete objects (Fig. 3(b)). In particular, irregularities force to create
lots of small segments. The approach we present hereafter is more flexible and
considers a segmentation into pieces of planes with a variable width, width-ν
blurred pieces of discrete planes (denoted BPDPν in the sequel) to be specific,
to deal with noisy data.

3.2 Segmentation into Blurred Pieces of Discrete Planes

Firstly, a pre-processing step is done on the borber Bb of the discrete object we
want to segment. Given a real ν, for each point p ∈ Bb we compute a width-ν
patch centered at p as explained in section 2.2. At each point p we can thus
associate the features presented in section 2.3, that is:

– the normal vector −→nν(p),
– the area factor EA(Γν(p)),
– and the shape factor Fν(p).

Our segmentation process can be summed up to the following steps: a seed is
chosen among points of Bb to start a first BPDPν recognition that grows through
a process of accretion. An adjacent point is selected and added to BPDPν if it
satisfies some required criteria. The BPDPν eventually stops growing when there

http://liris.cnrs.fr/isabelle.sivignon/DSD.html
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are no more adjacent points that can be added without contradicting the criteria.
This procedure is repeated from a new seed until all points of Bb belong to a
BPDPν .

In the following paragraphs we will discuss more in details the different key
points of this segmentation algorithm.

Seed Selection. The easiest way to choose a seed is to randomly pick a border
point which does not belong to a BPDPν and to start the recognition process
from there. The problem with this approach is that we have no control over
the segmentation. To segment a cube for instance, a bad choice would be to
start from seeds that lie near an edge of the cube. This would result in an
over-segmentation as shown in Fig 4.

A better choice is to start from seeds that are lying in flat areas. It is indeed
more meaningful to give a higher priority to flat areas than to bent areas since the
underlying primitive of a BPDPν is an arithmetical discrete plane. Chances to
have a better approximation are thus higher. Therefore we have chosen to rely on
the area estimator EA(Γν(p)) to find the seeds. The idea is to pick the border point
p (not yet processed) which has the highest EA(Γν(p)) value as the next seed.

BPDPν Recognition. The algorithm used to incrementally recognize width-
ν blurred pieces of discrete planes is the geometrical one proposed in [10] by
considering the Euclidean norm.

The spreading of a BPDPν heavily depends on the way the neighborhood of
the seed is visited as explained in [13]. For the same reasons as before, the value

Fig. 4. Over-segmentation due
to randomly chosen seeds

(a)

(b) (c) (d)

Fig. 5. The points that belong to the BPDPν

are in grey (a) Processing order of the neigh-
borhood. (b-d) Some possible configurations
when we try to add the point with the ques-
tion mark: (b) it cannot be added because it
is not 4-connected to another grey point; (c) it
cannot be added because it creates a hole; and
(d) it can be added.
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(a) (b) (c)

Fig. 6. Width-2 segmentation of a weakly (a) noisy cube of edge 30; (b) noisy sphere
of radius 20 with the method presented in section 3.2. (c) Segmentation of the same
sphere using only width-2 patches.

EA(Γν(p)) is used in the accretion process. Points p adjacent to the evolving
BPDPν are added according to their decreasing EA(Γν(p)) values.

To implement this behaviour we use a priority queue Q. We start by pushing
the seed into the queue with a weight equals to its area factor and mark this
seed as visited. Then, while Q is not empty, we pop out of Q the point p with
the highest weight w and we add p to the evolving BPDPν if it satisfies the
requiered criteria presented in the following paragraph. We then add the non-
visited 26-neighbours of p which belong to the border and their associated area
factor into the priority queue Q and mark them as visited.

Using this technique the BPDPν does not stop growing if a point cannot be
added.

Required Criteria. The first criterion that has to be satisfied is that the width
of the evolving BPDPν must not exceed ν when a point p is added. But this is
implicitly checked in the recognition algorithm.

Moreover, as we plan to use the segmentation in a future work to develop a
polyhedrization algorithm for noisy discrete objects, the BPDPν segments have
to satisfy some constraints of good formation. In particular we want a BPDPν

segment to be 4-connected and without holes, i.e. homeomorphic to a topolog-
ical disk, according to the main direction of the normal vector of its seed. To
check these constraints we use a simplified version of a method proposed in [12]
(p.153). We work in the projection plane associated to the normal vector of the
seed. We consider the 8-neighborhood of the point we are trying to add in the
evolving BPDPν and process the 8-neighbors in the order shown in Fig. 5(a).
During the processing a zero-initialized counter is incremented at each time we
go from a point which belongs to BPDPν to a point which does not, and vice-
versa. At the end, if the counter value is greater than two it means that the
point cannot be added whitout creating a hole. In the same time we check that
at least one 4-neighbor belongs to BPDPν . If a point does not pass these checks
it is marked as non-visited to give the tracking process the opportunity to visit
it later on.
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Some results obtained with this segmentation method are given in Fig. 6(a)
and 6(b). On the one hand, if we look at the cube in Fig. 6(a), we can see that
the segmentation is rather good and partition the object into six segments which
correspond to the six faces of the cube. On the other hand, the segmentation
of the sphere in Fig. 6(b) could be better. The problem with the sphere is its
curved border. The tracking process of points described in section 3.2 has the
opportunity to skirt round the points that cannot be added and on curved parts
it tends to create rough-crescent-shaped BPDPν . If we now use a width-ν patch-
based segmentation, as described in section 2.2, we can see that the result is far
better (see Fig. 6(c)). This is due to the chamfer-mask-based tracking process
used to grow the patches.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Results of different segmentations by using the hybrid method on synthetical
objects: (a, b) a width-2 segmentation of a weakly noisy sphere of radius 20; (d, e) a
width-3 segmentation of a strongly noisy cube of edge 25; (g, h) a width-1 segmentation
of non-noisy objects; and (c, f, i) a width-2 segmentation of an half hallowed ellipsoid.
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3.3 Hybrid Method

Relying on the previous observations, we have developed an hybrid segmentation
method. For seeds that lie in a flat part of the object we develop a BPDPν

segment as described in 3.2 and for seeds that lie in curved parts we develop a
patch Γν(p) (see section 2.2).

To distinguish between flat parts and curved parts we use the shape factor
Fν(p). As previously explained, an increasing value of |Fν(p)| means that the
surface around p is more strongly bent. Thus, given a threshold value σ and a
seed s, if |Fν(s)| < σ we develop a BPDPν segment, otherwise we develop a
patch Γν(s).

Results obtained with this method are shown in Fig. 7 and 8. In Fig. 7 synthet-
ical objects with different shapes have been segmented at different widths. We
can see in Fig. 7(g) and 7(h) that the method still works for non-noisy objects.

(a) (b)

(c) (d)

Fig. 8. The segmentation of a car (a, c) by using the DSD algorithm of I. Sivignon;
and (b, d) by using the width-2 hybrid method



170 L. Provot and I. Debled-Rennesson

Furthermore, due to the hybrid approach, both the flat and the curved areas of
the noisy half hallowed ellipsoid in Fig 7(c), 7(f) and 7(i), are well segemented.
In Fig. 8 a real-life object – an old Dodge car, available on the TC18 website3

– has been segmented with both, the DSD algorithm proposed by I. Sivignon
and the hybrid approach. We can notice that, with the hybrid approach, the flat
areas, i.e the roof, the parts of the hood and the windshield, are well segmented,
with respect to the shape of the car and with a little number of segments. In
curved areas the two segmentations are close, but it is difficult to decide what
is a “good” segmentation in these areas.

Note that, at this time, the threshold have to be set manualy, but we would
like to investigate more to find a way to automaticaly choose a good value for σ.

4 Conclusion

In this paper we have presented a segmentation method to decompose a possibly
noisy discrete object into pieces of discrete planes with a variable width. Different
segmentation strategies have been proposed, guided by geometric features of the
border of the object, computed in a pre-process step. Good results have been
obtained for both noisy and non-noisy objects, but we still have to investigate
more to automaticaly choose good values for the different parameters of the
method.

In a future work, we intend to use this segmentation to develop a smoothing
and a polyhedrization algorithms for noisy discrete objects. But some work have
to be done to propose a good definition for facets and to study the way to group
them together to build a Euclidean polyhedron. The strategies used in [5] and
in [3] could help us in that way. We also intend to lead formal studies on the
notion of noise to give a theoretical validation of the presented approach.
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Abstract. We present an adaptation of the recently proposed graph-shifts algo-
rithm for labeling MRF problems from low-level vision. Graph-shifts is an en-
ergy minimization algorithm that does labeling by dynamically manipulating, or
shifting, the parent-child relationships in a hierarchical decomposition of the im-
age. Graph-shifts was originally proposed for labeling using relatively small label
sets (e.g., 9) for problems in high-level vision. In the low-level vision problems
we consider, there are much larger label sets (e.g., 256). However, the original
graph-shifts algorithm does not scale well with the number of labels; for exam-
ple, the memory requirement is quadratic in the number of labels. We propose
four improvements to the graph-shifts representation and algorithm that make it
suitable for doing labeling on these large label sets. We implement and test the
algorithm on two low-level vision problems: image restoration and stereo. Our
results demonstrate the potential for such a hierarchical energy minimization al-
gorithm on low-level vision problems with large label sets.

1 Introduction

Markov random field (MRF) models [2] play a key role in both low- and high-level vi-
sion problems [13]. Example low-level vision problems are image restoration and stereo
disparity calculation. Fast and accurate labeling of MRF models remains a fundamental
problem in Bayesian vision. The configuration space is combinatorial in the labels and
the energy landscape is rife with local minima. This point is underscored by the recent
comparative survey of methods for low-level labeling by Szeliski et al. [15].

In recent years, multiple new algorithms have been proposed for solving the energy
minimization problem associated with MRF labeling. For example, graph cuts [3] is
one such algorithm that guarantees achieving a strong local minimum for two-class
energy functions. However, processing times for the graph cuts remain in the order of
several minutes on modern hardware. Max Product Belief propagation [8] computes
local maxima of the posterior, but it is not guaranteed to converge for the loopy graphs
present in low-level vision. Efficient implementations can lead to running times in the
order of seconds [6]. However, despite its high-regard and widespread use, it performed
poorly in the recent benchmark study [15].

In this paper, we work with a recently proposed approach called graph-shifts [4,5].
Graph-shifts is a class of algorithms that do energy minimization on dynamic, adaptive
graph hierarchies. The graph hierarchy represents an adaptive decomposition of the

V.E. Brimkov, R.P. Barneva, H.A. Hauptman (Eds.): IWCIA 2008, LNCS 4958, pp. 172–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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input image; they are adaptive in the sense that the graph hierarchy and neighborhood
structure is data-dependent in contrast to conventional pyramidal schemes [1] in which
the hierarchical neighborhood structure is fixed. They are dynamic in the sense that the
algorithm iteratively reduces the energy by changing the parent-child relationships, or
shifting, in the graph, which results in a change in the underlying labels at the pixels.
Graph-shifts stores a representation of the combinatorial energy landscape, and is able
to efficiently compute the optimal energy reducing move at each iteration.

The original graph-shifts algorithm [4,5] was defined on a conditional random field
(CRF) [11,12] with comparatively few labels (e.g., 8) and applied to high-level labeling
problems in medical imaging. Recall that a CRF is a MRF with a broader conditioning
on the observed data than is typical in MRF and MAP-MRF [9] formulations. But, in
the low-level labeling problems considered in this paper, the label sets are much larger
(e.g. 32, 256). The original graph-shifts algorithms scales linearly in pixels; however a
factor linear in labels is incurred at each iteration. The memory requirement is quadratic
in the labels. In practice, these complications lead to slower convergence as the number
of labels grow. The main focus and contribution of this paper is how we adapt graph-
shifts to work efficiently with large, ordered label sets (e.g., 256). This requires four
improvements on the original graph-shifts algorithm: 1) an improved way of caching
the binary energy terms, 2) efficient sorting of the potential shift list and 3) an improved
spawn shift, and 4) new, efficient rules for keeping the hierarchy in synch with the
energy landscape after shifting. We demonstrate this algorithm on standard benchmark
data in image restoration and stereo calculation.

We consider labeling problems of the following form. Define a pixel lattice Λ with
pixels i ∈ Λ, and associate a label (random variable) yi with each pixel. The labels take
values in a label set L = {1, . . . , k} and represent various problem specific physical
quantities we want to estimate, like intensities, disparities, etc. The joint probability
over the labels on the lattice, y

.= {yi}i∈Λ, is given by a Gibbs distribution:

P (y) =
1
Z

exp

⎡

⎣−
∑

i

U(yi, i) −
∑

〈i,j〉
V (yi, yj)

⎤

⎦ (1)

where Z is the partition function, and 〈i, j〉 represents the set of neighbors on Λ.
Equation 1 is the standard MRF. The clique potential functions, U and V , encode

the local energy associated with various labelings at pixel sites. U is conditioned on the
pixel location to permit the incorporation of some external data in the one-clique poten-
tial computation; for example, the input intensity field in image restoration (see section
5.1). The goal is to find a labeling y that maximizes P (y), or equivalently minimizes the
energy given by the sum over all clique potentials U and V . To simplify notation, we
will consider problem as energy function minimization in the remainder of the paper.

The remainder of the paper is as follows: a short literature survey is in the next
section. In section 3 we review the graph-shifts approach to energy minimization. Then,
in section 4, we present our adaptations that make it possible to apply the algorithm on
large label sets. In section 5 we analyze the proposed algorithm and give comparative
results to efficient belief propagation [6] for the image restoration problem.
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2 Related Work

Many algorithms have been proposed to solve the energy minimization problem asso-
ciated with labeling the MRFs. The iterated conditional modes [2] is an early algorithm
developed near the beginning of MRF research. It iteratively updates the pixel labels
in a greedy fashion choosing the new labeling that gives the steepest decrease in the
energy function. This algorithm converges slowly since it flips a single label at a time,
and is very sensitive to local minima. Simulated annealing [9], on the other hand, is a
stochastic global optimizer that given a slow enough cooling rate will always converge
to the global minimum. However, in practice, the slow enough is a burden.

Some more recent algorithms are able to consistently approach the global minimum
in compute times in the order of minutes. Graph cuts [3,10] can guarantee a so-called
strong local minimum for a defined class of (metric or semi-metric) energy functions.
Max-product loopy belief propagation (BP) [8] computes a low energy solution by pass-
ing messages (effectively, max of conditional distributions) between neighbors in a
graph. When (if) convergence is reached, BP will have computed a local max to the
label posterior at each node. Although not guaranteed to converge for loopy graphs,
it has performed well in a variety of low-level vision tasks [7], and can be effectively
implemented for low-level vision tasks to run in just a few seconds [6]. Tree reweighted
belief propagation (TRW) [16] is a similar message-passing algorithm that has the goal
of computing the upper bound on the log partition function of any undirected graph.
Although the recent comparative analysis [15] did not find a single best method, a mod-
ified version of the TRW approach did consistently outperform the other methods.

3 Graph-Shifts

Following the notation from [4], define a graph G to be a set of nodes μ ∈ U and a set
of edges. The graph is hierarchical and composed of multiple layers with the nodes at
the lowest layer representing the image pixels. Call two connected nodes on the same
layer neighbors using the predicate N(μ, ν) = 1 and N(μ, ν) = 0 otherwise. Two
connected nodes on different (adjacent) layers are called parent-child nodes. Each node
has a single parent (except for the nodes at the top layer, which have no parent) and has
the same label as its parent. Every node has at least one child (except for the nodes at
the bottom layer). Let C(μ) be the set of children of node μ and A(μ) be the parent of
node μ. A node μ on the bottom layer (i.e. on the lattice) has no children, and hence
C(μ) = ∅. At the top of the graph is a special root layer with a single node μ for each
of the k labels. The label of the root nodes is fixed to a single value. Since all non-root
nodes in the hierarchy can trace their ancestry back to a single root node, an instance of
the graph G is equivalent to a labeling of the image.

The coarser layers are computed recursively by an iterative bottom-up coarsening
procedure. We use the coarsening method defined in [4] without modification. The ba-
sic idea is that edges in the graph are randomly turned on or off based on the local
intensity similarity. The on edges induce a connected components clustering, and each
component defines a new node in the next coarse layer in the hierarchy. Thus, nodes at
coarser layers in the hierarchy represent (roughly) homogeneous regions in the images.
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The procedure is adaptive and the resulting hierarchy is data-dependent. This is in con-
trast to traditional pyramidal schemes [1] which fix the coarse level nodes independent
of the data. A manually tuned reduction parameter governs the amount of coarsening
that happens at each layer in the bottom up procedure. In section 5, we give advice
based on empirical experimentation on how to choose this parameter.

3.1 Energy in the Hierarchy

The original energy function (1) is defined at the pixel level only. Now, we extend this
definition to propagate the energies up the hierarchy by recursing on the potentials:

Û(yμ, μ) =

⎧
⎪⎨

⎪⎩

U (yμ, μ) if C(μ) = ∅
∑

ν∈C(μ)

Û(yμ, μ) otherwise (2)

V̂ (yμ1 , yμ2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V (yμ1 , yμ2) if C(μ1) = C(μ2) = ∅
∑

ν1∈C(μ1),
ν2∈C(μ2) :
N(ν1,ν2)=1

V̂ (yν1 , yν2) otherwise (3)

By defining the recursive energies in this form, we are able to explore the full label set L
at each layer in the hierarchy rather than work on a reduced label set at each layer, which
is typical of pyramidal coarse-to-fine approaches. By operating with the complete label
set in the whole hierarchy, graph-shifts is able to quickly switch between scales at each
iteration when selecting the next steepest shift to take (further discussion in section 5).

By using (2) and (3), we can compute the exact energy caused by any node in the
hierarchy. Furthermore, the complete energy (1) can be rewritten in terms of the roots:

E(y) .=
∑

i∈L
Û(yμi

, μi) +
∑

i,j∈L
N(μi,μj)=1

V̂ (yμi
, yμj

) (4)

3.2 The Graph Shift and Minimizing the Energy

A graph shift is defined as an operation that changes the label of a node by dynam-
ically manipulating the connectivity structure of the graph hierarchy. There are two
types of graph shifts: a split-merge shift and a spawn shift. During a split-merge shift
(figure 1(a)), a node μ detaches itself from its current parent A(μ) and takes the parent
of a neighbor A(ν). By construction, the shift also relabels the entire sub-tree rooted at
μ such that yμ = yν . During a spawn shift (figure 1(b)), a node μ creates (or spawns)
a new top-level root node μ and dynamically creates a chain connecting μ to μ with
one new node per layer. The new tree is assigned whatever label (one that none of μ’s
neighbors already had) was associated with the spawn shift. After making either shift,
the hierarchy must be resynchronized with the changed energy landscape (section 4.3).
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Initial State

μa μb μc

μ1 μ2 μ3 μ4

μa μb μc

μ1 μ2 μ3 μ4

Shift 1

μa μb μc

μ1 μ2 μ3 μ4

Shift 2

(a) Split-Merge Shift

μa μb μc

μ1 μ2 μ3 μ4

Initial State

μa μb μc

μ1 μ2 μ3 μ4

Do Spawn Shift

μa μb μc

μ1 μ2 μ3 μ4

Update Graph

(b) Spawn Shift

Fig. 1. Toy examples of the split-merge and spawn shifts with two classes, light and dark gray

The basic idea behind the graph-shifts algorithms is to select shift that would most
reduce the energy at each iteration. Using (2) and (3), the exact energy gradient, or the
shift gradient, can be computed as

ΔE(μ, yμ → ŷμ) = Û(ŷμ, μ) − Û(yμ, μ) +
∑

ν:N(μ,ν)=1

[
V̂ (ŷμ, yν) − V̂ (yμ, yν)

]
.

(5)

This directly leads to the graph-shifts algorithm. After initialization the graph hierarchy,
iterate the following steps until convergence:

1. Compute and select the graph shift that most reduces the energy.
2. Apply this shift to the graph.
3. Update the graph hierarchy to resynchronize with the new energy landscape.

4 Adapting Graph-Shifts for Large Label Sets

This section describes the adaptations we make to the original graph-shifts algorithms
to increase its efficiency when dealing with large label sets. The first two adaptations
(section 4.1) consider how the shifts are stored in various caches up the hierarchy. The
third one considers a reduced spawning label set (section 4.2). The fourth one, in section
4.3, discusses how to update the hierarchy and potential shift list after executing a shift.

4.1 Computing and Selecting Shifts

Here, we discuss two representational details that reduce the amount of computation
required when computing potential shifts. First, though the energy recursion formulas
(2) and (3) provide a mathematically convenient way of computing the energy at a given
node, repeatedly recursing down the entire tree to the leaves to compute the energy at a
node is often redundant. So, an energy cache is stored at each node in the hierarchy. The
cache directly stores the unary energy Û(yμ, μ) for a node μ in a vector of k dimension.
The unary cache can be efficiently evaluated in a bottom-up fashion at the leaves first
and them pushing them up the hierarchy. The memory cost is O(kn log n) for n pixels.

[4] suggests such a caching scheme for both the unary and the binary terms of the
energy. However, storing a similar complete cache for the binary term is not plausible
for large label sets because its cost is quadratic in the labels, O(k2cn log n) with c
being the average cardinality of the nodes. However, recall the binary term is a function
of only the labels at the two nodes, and the sub-trees have the same labels as their
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parents. So, for the binary energy, the recursion formulas serve to count the length of
the boundary between two nodes, which is then multiplied by the cost on the two labels:

V̂ (yμ1 , yμ2) = V (yμ1 , yμ2)B(μ1, μ2) (6)

B(μ1, μ2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N(μ1, μ2) if C(μ1) = C(μ2) = ∅
∑

ν1∈C(μ1)
ν2∈C(μ2)

B(ν1, ν2) otherwise. (7)

This form of the binary energy suggests caching the boundary length B between nodes
in the graph. By doing so, we save on the k2 factor for the cache and the resulting
memory cost is O(cn log n). We discuss how to update this cache after a shift in 4.3.

Second, a complete list of potential shifts is maintained by the algorithm. After ini-
tializing the hierarchy, the full list is computed, and all those shifts with a negative
gradient (5) are stored. To further reduce the list size, only a single shift is stored for
any given node. The list is updated after each shift (section 4.3). Computing the best
shift at each iteration results searching this list. [4] choose to store an unsorted list to
save the O(s log s), for s shifts, cost of initially sorting the list at the expense of O(s)
search every iteration. However, an O(s) is already paid during the initial computation.
Hence, the “sorting cost” is only an additional O(log s) cost if we sort while computing
the list. Searching every iterations is then only O(1). Thus, we choose to sort the list.

4.2 An Improved Spawn Shift

The original spawn shift [5] requires the evaluation of a shift gradient when switching to
potentially any new label. The cost of this evaluation grows with the number of labels,
O(k), but the cost of computing the best split-merge shift for a node is O(c) using the
caches. In the problems we consider k � c. We exploit the label ordering and search
only a sub-range of the labels based on the current label. For node μ with label yμ, we
search the range {yμ − κ, yμ + κ} where κ is a user selected parameter (we use 3).

4.3 Updating the Hierarchy After a Shift

A factor of crucial importance to the graph-shifts algorithm is dynamically keeping the
hierarchy in synch with the energy landscape it represents. Since a shift is a very local
change to the labeling, updating the hierarchy can be done quickly. After each shift,
the following steps must be performed to ensure synchrony. Assume the shift occurs at
level l, pixels correspond to level 0 and there are T levels in the hierarchy.

1. Update the unary caches at levels t = {l + 1, . . . , T}.
2. Update the boundary length caches at levels t = {l + 1, . . . , T}.
3. Recompute the shift for all affected nodes and update their entries in the potential

shift list (removing them if necessary). Affected nodes will be present on all graph
levels. For nodes below l, any node in the subtree or an immediate neighbor of the
subtree of the shifted node must be updated. For nodes above only the parents and
their neighbors must be updated. This an O(c log n) number of updates.
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Updating the unary caches is straightforward. For a split-merge shift where node μ
shifts to ν and takes A(ν) as a new parent, the update equations are

Û (y, A(μ))′ = Û (y, A(μ)) − Û (y, μ) ∀y ∈ L (8)

Û (y, A(ν))′ = Û (y, A(ν)) + Û (y, μ) ∀y ∈ L . (9)

Consider a spawn shift where μ spawns a new sub-tree to the root level. Equation (8)
applies to the old parent A(μ). The new parent A∗(μ) is updated by

Û (y, A∗(μ)) = Û (y, μ) ∀y ∈ L . (10)

Each of these equations must be applied recursively to the root level T in the hierarchy.
Since the boundary length terms involve two nodes, they result in more complicated

update equations. For a shift from node μ to ν the update equations for level l + 1 are

B (A(μ), A(ν))′ = B (A(μ), A(ν)) −
∑

η : A(η)=A(ν),
N(μ,η)=1

B(μ, η) (11)

B (A(ν), A(ω))′ = B (A(ν), A(ω)) + B(μ, ω)

B (A(μ), A(ω))′ = B (A(μ), A(ω)) − B(μ, ω)
∀ω : A(ω) 	= A(ν), N(μ, ω) = 1 (12)

where A(μ) is the ancestor of μ before the shift takes place. The second term on the
righthand side of (11) arises because μ can be a neighbor to more than one child of
A(ν). When, μ shifts to become a child of A(ν), then it will a become sibling of such
a node and the boundary length from A(μ) to A(ν) must account for it. Again, the
updates must be applied recursively to the top of the hierarchy. These equations are also
applicable in the case of a spawn shift with the additional knowledge, that if B(A(ν), ·)
is 0, then a new edge must be created in the graph connecting these two nodes.

5 Experiments

We consider two low-level labeling problems in this section: image restoration and
stereo. We also present a number of evaluative results on the efficiency and robustness
of the graph-shifts algorithm for low-level MRF labeling. In all of the results, unless
otherwise stated, a truncated linear binary potential function was used. It is defined on
two labels and is fixed by two parameters, β1, β2:

V (yi, yj) = min(β1||yi − yj ||, β2) . (13)

5.1 Image Restoration

Image restoration is the problem of removing the noise and other artifacts of an acquired
image to restore it back to its original, or ideal state. The label set comprises the 256
gray-levels. To analyze this problem, we work with the well-known penguin image; it’s
ideal image is given on the right in figure 2. In figure 3, we present some restoration
results for various possible potential functions on images that have been perturbed by
independent Gaussian noise of three increasing variances (in each row). In the following
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Fig. 2. The ideal im-
age

potentials, let xi be the inputted intensity in the corrupted image.
The second column shows a Potts model on both the unary and bi-
nary potential functions. The third column shows a truncated linear
unary potential and a Potts binary potential with the fourth column
showing both truncated linear potentials. Truncated quadratic re-
sults are shown in figure 4 in comparison with EBP. In these results,
we can see that the graph-shifts algorithm is able to find a good
minimum to the energy function, and it’s clear that the stronger
potential functions are giving better results. In the truncated linear
terms here, α1 = β1 = 1, α2 = 100, and β2 = 20. The two terms
were equally weighted.

Potts UP (yi, i) = δ(xi, yi) (14)

Truncated Linear UL(yi, i) = min(α1||xi − yi||, α2) (15)

Truncated Quadratic UQ(yi, i) = min(α1||xi − yi||2, α2) (16)

Figure 4 and table 1 present a comparison of the image restoration graph-shifts
with the efficient belief propagation (EBP) [6] algorithm. Here, we use a truncated
quadratic energy function (16) with exactly the same energy function and parameters:
α1 = β1 = 1, α2 = 100 and β2 = 20. In these restoration results, we use the sum
of squared differences error between the original (ideal) image and the restored image
that is outputted by each algorithm to measure the accuracy. Note, however, that the
energy minimization algorithms are not directly minimizing the sum-of-squared differ-
ences error function. When computing the SSD error on these images we disregarded
the outside row and column since the EBP implementation cannot do labeling near the
image borders.

From inspecting the scores in table 1, we find the two algorithms are both able to
find good minima for the two inputs with smaller noise. The graph-shifts minimum
achieves lower SSD error scores for these two images. This could be due to the extra
high-frequency information near the bottom of the image that it was able to retain, but
the EBP implementation smoothed it out. However, for the higher noise variance, EBP
is able to converge to a similar minimum and its SSD error is much low than graph-
shifts in this case. We also see that the two algorithms run in the order of seconds (they
are run on the same hardware). However, the speed comparison is not completely fair:
EBP is implemented in C++ while graph-shifts is implemented in Java (one expects at

Table 1. Quantitative comparison of time and SSD error between efficient belief propagation and
graph-shifts. Speed is not directly comparable as BP is in C++ but graph-shifts is in Java.

Time (ms) SSD Error
Variance Graph-Shifts Efficient BP Graph-Shifts Efficient BP

10 18942 2497 2088447 2524957
20 24031 2511 2855951 3105418
30 24067 2531 5927968 3026555
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Fig. 3. Visual comparison of the performance of different energy functions with the same graph-
shifts parameters. The images on the left are the input noisy images (with variances of 10, 20,
and 30 in the rows). The remaining columns are Potts+Potts,Truncated Linear+Potts,Truncated
Linear+Truncated Linear in the unary + binary terms, respectively.

least a factor of two speedup). We note that some of the optimizations suggested in the
EBP algorithm [6] can also apply in the computation and evaluation of the graph shifts
to further increase efficiency. The clear message from the time scores is that the graph-
shifts approach is of the same order of magnitude as current state of the art inference
algorithms (seconds).

5.2 Stereo

We present results on two images from the Middlebury Stereo Benchmark [14]: the
sawtooth image has 32 disparities with 8 levels of subpixel accuracy or a total of 256
labels, and the Tsukuba image has 16 labels. The energy functions we use here to model
the stereo problem remain very simple MRFs. The unary potential is a truncated linear
function on the pixel-wise difference between the left image IL(u, v) and the right
image IR(u − yi, v), where i = (u, v):

US(yi, i) = min(α1||IL(u, v) − IR(u − yi, v)||, α2) . (17)

Figure 5 shows the two results. The parameters are α1 = β1 = 1, α2 = 100 and
β2 = 20 for the tsukuba image and α1 = β1 = 1, α2 = β2 = 10. The inferred
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Fig. 4. Visual comparison between the proposed graph-shifts algorithms and the efficient belief
propagation [6]. The two pairs of images have noise with variance 10, 20, and 30. Images in each
pair are the EBP restoration followed by the graph-shifts restoration. See Fig. 3 for input images.

disparity, on the right, is very close the ground truth nearly everywhere in the image.
These results are in the range of the other related algorithms [3,6]. However, graph-
shifts can compute them in only seconds. Even without a specific edge/boundary model,
which many methods in the benchmark use, the graph-shifts minimizer is able to main-
tain good boundaries. For lack of space, we cannot discuss the stereo results in more
detail.

5.3 Evaluation

We use the truncated linear unary and binary potentials on the penguin image (for
restoration) with a variance of 20 for the noise in all results in this section unless oth-
erwise noted. The parameters on the potentials are (1, 100) and (1, 20) for unary and
binary respectively.

Fig. 5. Results on computing stereo with the graph-shifts algorithm on an MRF with truncated
linear potentials. Left column is the left image of the stereo pair, middle column is the ground
truth disparity, and the right column is the inferred disparity.
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Fig. 6. Evaluation plots. (left) How does the convergence time vary with the height of the hierar-
chy (reduction parameter)? (right) How robust is the convergence speed when varying parameters
of the potential functions?
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Fig. 7. These four graphs show statistics about the graph-shift process during one of the image
restoration runs. See text for full explanation.

Figure 5.3-left shows how the time to converge varies with changing the reduction
criterion. As the graph reduction factor increases, we see an improvement in both the
time to converge and the SSD error. Recall the graph reduction factor is related in-
versely to the amount of coarsening that occurs in each layer. So, with a larger factor, the
taller the hierarchy we find and the stronger the homogeneity properties in each graph
node. Thus, the shifts that are taken by the graph-shifts with larger graph reduction are
more targetted and result in fewer total necessary shifts. Figure 5.3-right demonstrates
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robustness to variation in the parameters of the energy functions. As we vary the trun-
cation parameter on the unary potential the time to converge stays roughly constant, but
the SSD error changes (as expected).

Figure 7 shows four different graphs that explore the actual graph-shift process. Each
graph shows the shift number on the horizontal access and the vertical axis shows one
of the following measurements (left-to-right) the level at which each shift occurs, the
mass of the shift (number of pixels whose label changes), the shift gradient (5) and
the SSD error of the current labeling. We show the SSD error to demonstrate that it
is being reduce by minimizing the MRF; the SSD error is not the objective function
directly being minimized. The upper-left plot highlights a significant difference in the
energy minimization procedure created by the graph-shifts algorithm and the traditional
multi-level coarse-to-fine approach. We see that as the algorithm proceeds it is greatly
varies in which level to select the current shift; recall that graph-shifts will select the
shift (at any level) with the current steepest negative shift gradient. This up-and-down
action contrasts the coarse-to-fine approach which would complete all shifts at the top
level and the proceeds down until the pixel level.

6 Conclusion

In this paper we present an adaptation of the recently proposed graph-shifts algorithm to
the case of MRF labeling with large label sets. Graph-shifts does energy minimization
by dynamically changing the parent-child relationships in a hierarchical decomposition
of the image, which encodes the underlying pixel labeling. Graph-shifts is able to ef-
ficiently compute the optimal shift at every iteration. However, this efficiency comes
from keeping the graph in synch with the underlying energy. The large label sets make
ensuring this synchrony difficult. We made four suggestions for adapting the original
graph-shifts algorithm to maintain its computational efficiency and quick run-times (or-
der of seconds) for MRF labeling with large label sets. The results on image restoration
and stereo are an indication of the potential in such a hierarchical energy minimization
algorithm. The results also indicate that the quality of the minimization depends on the
properties of the hierarchy, like height and homogeneity of nodes. In future work, we
plan to develop a methodology to systematically optimize these for a given problem.
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Abstract. Two key aspects of coupled multi-object shape analysis are the choice
of representation and subsequent registration to align the sample set. Current
techniques for such analysis tend to trade off performance between the two tasks,
performing well for one task but developing problems when used for the other.

This article proposes Ln label space, a representation that is both flexible
and well suited for both tasks. We propose to map object labels to vertices of a
regular simplex, e.g. the unit interval for two labels, a triangle for three labels, a
tetrahedron for four labels, etc. This forms a linear space with the property that
all labels are equally separated.

On examination, this representation has several desirable properties: algebraic
operations may be done directly, label uncertainty is expressed as a weighted
mixture of labels, interpolation is unbiased toward any label or the background,
and registration may be performed directly.

To demonstrate these properties, we describe variational registration directly
in this space. Many registration methods fix one of the maps and align the rest of
the set to this fixed map. To remove the bias induced by arbitrary selection of the
fixed map, we align a set of label maps to their intrinsic mean map.

1 Introduction

Multi-object shape analysis is an important task in the medical imaging community.
When studying the neuroanatomy of patients, clinical researchers often develop statis-
tical models of important structures which are then useful for population studies or as
segmentation priors [7,9,10,11,12]. The first step for this problem consists in choosing
an appropriate shape descriptor capable of representing its statistical variability.

A common starting point for shape representation is a simple scalar label map, each
pixel indicating the object present at that pixel, e.g. a one indicating object #1, a two
indicating object #2, etc. Many techniques go on to map this entire volume to another
space, the value of each pixel contributing to describe the shape. In this new space,
arbitrary topologies may be represented, correspondences are naturally formed between
pixels, and there are no control points to distribute.

The simplest implicit representation is a binary map where each pixel indicates the
presence or absence of the object. Signed distance maps (SDM’s) are another exam-
ple of an implicit representation, each pixel having the distance to the nearest object
boundary, a negative distance for points inside the object [7,12].

V.E. Brimkov, R.P. Barneva, H.A. Hauptman (Eds.): IWCIA 2008, LNCS 4958, pp. 185–196, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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√
2

1

Fig. 1. Tsai et al. [11] proposed mapping each pixel from object label to a point in a space shaped
as a non-regular simplex, each vertex corresponding to an object label. Visualized here for the
case of two objects and background, the bottom left background (0,0) is a distance of 1 from both
labels top (0,1) and right (1,0), while labels are separated from each other by a distance of

√
2.

Fig. 2. Example configurations for the S1 hypersphere representation of [2]: three, six, and seven
labels (left to right) with background at the center

For the multi-object setting, binary maps may be extended to scalar label maps, each
pixel holding a scalar value corresponding to the presence of a particular object; how-
ever, this representation is not well suited for algebraic manipulation. For example, if
labels are left as scalar values, the arithmetic average of labels with values #1 and #3
would incorrectly indicate the label of value #2, not a mixture of labels #1 and #3.

To address this, mappings of object labels to linear vector spaces were proposed,
an approach to which our method is most closely related. The work of Tsai et al. [11]
introduced two such representations, each for a particular task. For registration, the
authors proposed mapping scalar labels to binary vectors with entries corresponding
to labels; a one in an entry indicates the presence of the corresponding label at that
pixel location. As an example for the case of two labels and background, Figure 1
visualizes the spatial configuration each pixel is mapped onto. Here the background
is at the bottom left origin (0,0) with one label at (1,0) and the other at (0,1). It is also
important to note that he goes on to perform registration considering each entry of these
vectors separately. For shape analysis, Tsai et al. [11] proposed mapping scalar labels to
layered SDM’s, in this case each layer giving the signed distance to the corresponding
object’s interface.

Note that in both vector valued representations described in Tsai et al. [11], each
label lies on its own axis and so the dimension of the representation grows linearly with
the number of labels, e.g. two objects require two dimensions, three objects require
three dimensions. To address this spatial complexity, Babalola and Cootes [2,3] pro-
pose a lower dimension approximation to replace the binary vectors in registration. By
mapping labels to the unit hypersphere Sn, they demonstrate that even configurations
involving dozens of labels can be efficiently represented with label locations distributed
uniformly on a hypersphere. Figure 2 gives examples for S1.

Finally, Pohl et al. [10] indirectly embeds label maps in the logarithm-of-odds space
using as intermediate mappings either the binary or SDM representations of [11].
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Fig. 3. The first three Ln label space configurations: a unit interval L2 in R for two labels, a
triangle L3 in R

2 for three labels, and a tetrahedron L4 in R
3 for four labels (left to right)

Particularly well suited for probabilistic computations, the logarithm-of-odds space is
also a field providing closed operations for addition and scalar multiplication. As with
the representations of Tsai et al. [11], the dimensionality of the logarithm-of-odds space
increases with each additional object. We should also note that the work of [10] did not
address registration, but instead assumed an already registered atlas via [8].

Once the representation is settled upon, registration must be performed to eliminate
variation due to differences in pose. A common approach is to register the set to a
reference image; however, this then introduces a bias to the shape of the chosen refer-
ence. Joshi et al. [6] propose unbiased registration with respect the mean sample as a
template reference. Assuming a general metric space of transformations, they describe
registering a sample set with respect to its intrinsic mean and use the L2 distance for
demonstration. A similar approach uses the minimum description length to measure
distance from the intrinsic mean [13]. Instead of registering to a mean template, an al-
ternative approach is to minimize per-pixel entropy. Using binary maps Miller et al. [8]
demonstrate that this has a similar tendency toward the mean sample. This approach has
also been demonstrated on intensity images [14,15]. Among these energy-based regis-
tration techniques, iterative solutions include those that are variational [11,6] and those
that use sampling techniques [15].

1.1 Our Contributions

This paper proposes a multi-object implicit representation that maps object labels to
the vertices of a regular simplex, going from a scalar label value to a vertex coordinate
position in a high dimensional space which we term label space and denote by Ln for
n labels. Visualized in Figure 3, this regular simplex is a hyper-dimensional analogue
of an equilateral triangle, n vertices capable of being represented in n − 1 dimensions
(Ln ⊂ R

n−1). Lying in a linear vector space, this space has several desirable prop-
erties: all labels are equally separated in space, addition and scalar multiplication are
natural, label uncertainty is expressed as a weighted combination of label vertices, and
interpolation is unbiased toward any label including the background.

The proposed method addresses several problems with current implicit mappings.
For example, while the binary vector representation of Tsai et al. [11] was proposed
for registration, we will demonstrate that it induces a bias sometimes leading to mis-
alignment, and since our Ln label space representation equally spaces labels, there is
no such bias. Additionally, compared to the SDM representation, the proposed method
introduces no inherent per-pixel variation across equally labeled regions making it more
robust for statistical analysis. Hence, the proposed method better encapsulates the func-
tionality of both representations. Further, the registration energy of Tsai et al. [11] is
designed to consider each label independent of the others. In contrast, Ln label space
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Fig. 4. For the S1 hypersphere configurations of [2], cases such as these yield erroneous results
during interpolation. Judged by nearest neighbor, interpolating between two labels resolves to
background, ambiguously either background or another label, and finally another label (left to
right).

jointly considers all labels. We will also demonstrate that, while lowering the spatial
demands of the mapping, the hypersphere representation of Babalola and Cootes [2]
biases interpolation and can easily lead to erroneous results. The arrangement of our
proposed label space incurs no such bias allowing linear combinations of arbitrary
labels.

The rest of this paper is organized as follows. Section 2 explores several problems
that can develop with the implicit representations described above [2,10,11]. Section 3
then describes the proposed Ln label space representation documenting several of its
properties. Section 4 demonstrates variational registration directly within this represen-
tation, and finally in Section 5 we summarize our work.

2 Related Work

2.1 Shape Representation

The signed distance map (SDM) has been used as a representation in several studies
[1,7,10,11,12]; however, it may produce artifacts during statistical analysis [4]. For ex-
ample, small deviations at the interface cause large variations in the surface far away,
thus it inherently contains significant per-pixel variation. Additionally, ambiguities arise
when using layered signed distance function to represent multiple objects: what happens
if more than one of the distance functions indicates the presence of an object? Such am-
biguities and distortions stem from the fact SDM’s lie in a manifold where these linear
operations introduce artifacts [4,5].

Label maps have inherently little per-pixel variation, pixels far from the interface
having the same label as those just off the interface. For statistical analysis in the case
of one object, Dambreville et al. [4] demonstrated that binary label maps have higher
fidelity compared to SDM’s. However, for the multi-object setting, the question then
becomes one of how to represent multiple shapes using binary maps? What is needed
is a richer feature space suitable for a uniform pair-wise separation of labels.

An example of such a richer feature space is that of Babalola and Cootes [2] where
labels are mapped to points on the surface of a unit hypersphere Sn placing the back-
ground at the center. This is similar to the binary vector representation described by
Tsai et al. [11] to spread labels out; however, Babalola and Cootes [2] argue that lower
dimensional approximations can be made. They demonstrate that configurations in-
volving dozens of labels can be efficiently represented by distributing label locations
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uniformly on the unit hypersphere using as few as three dimensions. Since any label
may neighbor the background, the background must be placed at the hypersphere cen-
ter, equally spaced from all other labels. The fundamental assumption is that pixels
only vary between labels that are located near to each other on the hypersphere, so
the placement of labels is crucial to avoid erroneous label mixtures. For example, Fig-
ure 4 demonstrates that if two labels far from each other are mixed, the result may be
attributed erroneously to other labels. Notice in particular that the central placement
of the background gets in the way when interpolating across the sphere. Smoothing in
Figure 7 also demonstrates these inherent effects of the lower dimensional approxima-
tion, effects that cannot be avoided unless the dimension approaches label cardinality.

The logarithm-of-odds representation of Pohl et al. [10] provides the third and final
shape representation we compare against. Aside from the normalization requirement
for closed algebraic manipulation, the main concern when using this representation is
the choice of intermediate mapping, a choice that directly impacts the resulting prob-
abilities. The authors explore the use of both representations from [11]; however, both
choices have inherent drawbacks.

For the layered SDM intermediate mapping, Pohl et al. [10] notes that SDM’s are a
subspace of the logarithm-of-odds space. This means that, while the layered SDM’s are
exactly the logarithm-of-odds representation, results after algebraic manipulation in the
logarithm-of-odds space often yield invalid SDM’s (but still valid logarithm-of-odds
representations). Using such results, computing probabilities as described in [10] may
yield erroneous likelihoods. Notice also, that the generalized logistic function is used to
compute probabilities. This introduces additional problems as the use of the exponential
ensures that these probabilities will always have substantial nonzero character across the
entire domain, even in areas never indicated by the sample set.

Using smoothed binary maps as intermediates also leads to problems. To begin, us-
ing binary maps directly would mean probabilities of either zero or one, which in the
log domain produce singularities. Smoothing lessens such effects yet results in a loss
of fine detail along the interface. Also, Pohl et al. [10] shows examples where after
normalization the logarithm-of-odds representation develops artifacts at the interface
between objects, an effect which is magnified in the logarithm domain.

2.2 Registration

Tsai et al. [11] propose a binary vector representation specifically for registration. As
Figure 1 shows, this representation places labels at the corners of a right-triangular
simplex; however, unlike this present work, it is not a regular simplex but has a bias
with respect to the background. The background, located at the origin, is a unit distance
from any other label, while any two labels, located along a positive axis, are separated
by a distance of

√
2. The effect may be seen in registration where there is a bias to

misalign labels over the background (penalty 1) rather than over other labels (penalty√
2).
To demonstrate the effect of this induced bias, consider the example in Figure 5 with

black background and two rectangles of label #1, one with strip of label #2 along its
top. Using the representation and registration energy of Tsai et al. [11], there are two
global minima: the image overlapping and the image shifted up. In the first case, label
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Fig. 5. Alignment of an image with a reference template using the representation of Tsai et al.
[11] results in two possible alignments, the shifted one misaligning along both the top and bottom
with respect to the reference (red dots indicate minima). For just x- and y-translation, isocontours
of the energy landscape show the non-unique energy minima in (c).

#1 is misaligned over label #2, while in the second case that a strip of pixels at both
the top and bottom are misaligned over the background; that is, because of this bias,
there can be twice as many pixels misaligned in the shifted case than in the unshifted.
These global minima (indicated by red dots in the energy landscapes) are shown only
for translation; considering additional pose parameters further increases the number
of local minima in the energy landscape representing misalignments. Also, this is not
inherent in the energy, as the same phenomena is observed using the energy in (1).
Since all labels are equidistant in the proposed representation, there are fewer minima
and hence less chance of misalignment.

3 Label Space

Our goal is to create a robust representation where algebraic operations are natural,
label uncertainty is captured, and interpolation is unbiased toward any label. To this
end we propose mapping each label to a vertex of a regular simplex; given n labels,
including the background, we use a regular simplex which lies in n− 1 dimensions and
denote this by Ln (see Figure 3). A regular simplex is an n-dimensional analogue of an
equilateral triangle.

In this space, algebraic operations are as natural as vector addition, scalar multipli-
cation, inner products, and norms; hence, there is no need for normalization as in [10].
Label uncertainty is realized as the weighted mixture of vertices. For example, a pixel
representing labels #1, #2, and #3 with equal characteristic would simply be the point
p = 1

3v1 + 1
3v2 + 1

3v3, a point equidistant from those three vertices (see Figure 6). Also,
we have that such algebraic operations are unbiased toward any label since all labels

Fig. 6. Proposed L3 label space for the case of three labels: a point indicating the equal presence
of all three labels (left), and a point indicating the unequal mixed presence of just the left and top
labels (right)
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(a) Scalar label map

(b) Sn hypersphere of Babalola and
Cootes [2]

(c) Ln label space

Fig. 7. Progressive smoothing directly on scalar label maps, the hypersphere representation of
Babalola and Cootes [2], and Ln label space. Both the scalar label maps and hypersphere rep-
resentations develop intervening strips of erroneous labels. Only label space is able to correctly
capture the label mixtures during smoothing. The rightmost hypersphere in Figure 4 depicts the
S1 configuration used here in (b).

(a) Binary vector representation of Tsai
et al. [11]

(b) Ln label space

Fig. 8. Progressive smoothing directly on binary vector representation of Tsai et al. [11] and Ln

label space. Smoothing among several labels in the binary vector representation yields points
closer to background (black) than any of the original labels. Label space is able to correctly begin
to smooth out the sharp corners of the bottom two regions without erroneous introduction of the
black background label.

are equally spaced; hence, there is no bias with respect to the background as is found
in both [2,11]. Label space is robust to statistical analysis much like binary label maps,
a specific case of label space. Additionally, problems encountered in the intermediate
representations of [10] are avoided. Specifically, smoothing is unnecessary and so fine
detail is retained, and interfaces are correctly maintained.

To demonstrate some of these properties, we performed progressive smoothing using
the various representations described: scalar label values, the binary vector representa-
tion of Tsai et al. [11], the Sn representation of Babalola et al. [2], and Ln label space.
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In Figure 7, the first experiment has each example beginning on the left with the jagged
stripes of labels #5, #7, and #3, respectively. Scalar label values show the appearance of
intervening labels #4, #5, and #6 as the original labels blend, and the hypersphere rep-
resentation shows the appearance of labels #2, #6, and #4 as interpolation is performed
across the hypersphere (the hypersphere configuration used here is the rightmost de-
picted in Figure 4). In Figure 8, the second experiment shows that the smoothing among
multiple labels using binary vectors produces points closest to the background (black).
In both experiments, only label space correctly preserves the interfaces.

4 Registering to the Mean Map

We demonstrate here the variational registration of a set of maps to their intrinsic mean
map, thereby respecting the first order statistics of the sample set. The proposed repre-
sentation has the advantage of supporting registration directly on the representation. By
directly we mean that differentiable vector norms may be used to compare labels.

In this section, we begin with a review of reference-based approaches for rigid regis-
tration borrowing the notation of [11]. After demonstrating how a bias can be induced
by the choice of reference template, we demonstrate unbiased registration using the
mean map as the reference template in the manner of [6]. We conclude with experi-
ments on synthetic maps, the 2D slices from [11] with three labels, and 2D slices with
eight labels.

Common approaches to registration begin by fixing one of the maps as a reference
and registering the remaining maps to this fixed map. This is done in both [2,11]; how-
ever, as Joshi et al. [6] describes, this initial choice biases the spatial statistics of the
aligned maps. In Figure 9 we see this effect: as the choice of fixed map is varied, the re-
sulting atlas varies in translation, scale, rotation, and skew (registration was performed
as in [11]). To avoid this bias, Joshi et al. [6] describe registration with respect to a
reference that best represents the sample set. In addition to avoiding bias, the resulting
gradient descent involves far less computation than that proposed in [11] where each
map is compared against each other map. Also, since the reference image is a convex
combination of the set, there is no fear of the set M̃ shrinking to minimize the energy.

Before presenting the energy used, we first describe the problem borrowing nota-
tion from [11]. For the set of label maps M = {mi}Ni=1, our goal is to estimate
the set of corresponding pose parameters P = {pi}Ni=1 for optimal alignment. We
denote as m̃ the label map m transformed by its pose parameters. An advantage of
implicit representations over explicit ones is that, once the label maps have undergone

Fig. 9. Label maps from patient MRI data after registration where a different label map has been
fixed in each run. The choice of which map to fix can subtly distort measurements and hence the
statistical model constructed from the registered set.
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this transformation, we can assume direct per-pixel correspondence between maps and
use a vector norm to perform comparison. We model pose using an affine model, and
so for 2D, the pose parameter is the vector p = [x y sx sy θ k]T corresponding
to x-,y- translation, x-,y-scale, in-plane rotation, and shear. Note that this is a fully
affine model as compared to the rigid transformation model used in [11]. The trans-
formed map is defined as m̃(x̃, ỹ) = m(x, y) where coordinates are mapped according

to
[
x̃ ỹ 1

]T = T (p)
[
x y 1

]T
, where T (p) is the decomposable transformation matrix

T (p) =

⎡

⎣
1 0 x
0 1 y
0 0 1

⎤

⎦

︸ ︷︷ ︸
M(x,y)

⎡

⎣
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎤

⎦

︸ ︷︷ ︸
R(θ)

⎡

⎣
sx 0 0
0 sy 0
0 0 1

⎤

⎦

︸ ︷︷ ︸
H(sx ,sy)

⎡

⎣
1 k 0
k 1 0
0 0 1

⎤

⎦

︸ ︷︷ ︸
K(k)

for a translation matrix M(x, y), rotation matrix R(θ), anisotropic scale matrix H
(sx, sy), and shear matrix K(k), all for the parameters taken from p.

As in [6,15], we assume the intrinsic mean map μ̃ of the sample set to best repre-
sent the population. We then attempt to minimize the energy defined as the squared
distance between each transformed label map m̃ and this mean map μ̃ of the set M̃ as
it converges:

d2 =
N∑

i=1

‖m̃i − μ̃‖2, (1)

where μ̃ = 1
N

∑N
i=1 m̃i, and while ‖ ·‖may be any differentiable norm, we take it to be

the elemental L2 inner product ‖x‖ = 〈x, x〉1/2 =
∫

x2dx. Notice how using a vector
norm here jointly considers all labels in contrast to the energy proposed by Tsai et al.
[11]. Further, since the reference map μ̃ is intrinsic, there is no concern of the set M̃
shrinking to minimize (1). Hence, there is no need for the normalizing term introduced
in [11] which allows for a reduced complexity energy here.

This work uses a variational approach to registration. Specifically we perform gra-
dient descent to solve for the pose parameters minimizing this distance. We find the
gradient of this distance, taken with respect to the pose pj , to be:

∇pj d
2 = 2〈∇pj m̃j , m̃j − μ̃〉. (2)

Notice that terms involving other label maps (m̃i for i �= j) fall out and that the
gradient of the mean contributes nothing. It remains to define ∇pj m̃j . For the kth

element of the pose parameter vector pj , using the chain rule produces ∇pk
j
m̃j =

[
∂m̃j

∂x̃
∂m̃j

∂ỹ 0
]

∂T (pj)

∂pk
j

⎡

⎣
x
y
1

⎤

⎦ , where ∂T (pj)

∂pk
j

is computed for each pose parameter where

matrix derivatives are taken componentwise. Finally, gradient descent proceeds by re-
peated calculation of∇pj d

2 and adjustment of pj for each map in the set until conver-
gence.

To illustrate this technique, we first performed alignment of a synthetic 2D set. The
unaligned set consists of 15 maps of three labels and background. Figure 10 shows
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(a) Example maps from unaligned set

(b) Original (c) Aligned

Fig. 10. Alignment of a set of 15 synthetic maps with three labels and background. The original
and aligned sets are superimposed for visualization.

(a) Perturbed origi-
nal

(b) Recovered

Fig. 11. From the dataset used by Tsai et al. [11], one map is chosen and perturbed under several
transformations, yet registration is able to recover the pose parameters to bring the perturbed
versions back to the original chosen map. The perturbations ranged up to translations of 5% of
the image, rotational differences of 20◦, and scale changes +/- 5% of the image. The original and
aligned sets are superimposed for visualization.

examples from this set as well as the original and aligned sets. For visualization, we
created a superimposed map for both the original unaligned set and the aligned set by
summing the scalar label values pixelwise and dividing by the number of maps, hence
this is the mean scalar map.

We then turned to verifying our method using the 2D data from the study by Tsai
et al. [11]. Taking one map from this set, we formed a new set by transforming this
map arbitrarily. Restricting ourselves to the rigid rotation pose model used in that study,
we formed transformations involving translations of 5% of the image size, rotational
differences of 20◦, and scale changes of +/- 5% of the image. Figure 11 shows that
the technique successfully recovered the initial map. Figure 12 shows alignment on the
entire data set.

Lastly, we performed registration using 2D maps obtained from expert manual seg-
mentation of 33 patient MRI scans involving eight labels and background. Figure 13
shows examples from the original unaligned set as well as the superimposed maps after
alignment.
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(a) Original (b) Aligned

Fig. 12. Alignment of a set of 30 maps used in the study by Tsai et al. [11]. The original and
aligned sets are superimposed for visualization.

(a) Example maps from unaligned set

(b) Original (c) Aligned

Fig. 13. Alignment of a set of 33 maps with eight labels and background obtained from manual
MRI segmentations. The original and aligned sets are superimposed for visualization.

5 Conclusion

This paper describes a new implicit multi-object shape representation. After detailing
several drawbacks to current representations, we demonstrated several of its properties.
In particular, we demonstrated that algebraic operations may be done directly, label un-
certainty is expressed naturally as a mixture of labels, interpolation is unbiased toward
any label or the background, and registration may be performed directly.

Modeling shapes in label space does have its limitations. One key drawback to la-
bel space is the spatial demand. To address this we are examining lower dimensional
approximations much like Babalola and Cootes [2]. Some interpolation issues such as
those noted in Figure 4 might be avoided by taking into consideration the empirical
presence of neighbor pairings when determining label distribution.
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Abstract. An alternative to the gradient-based image segmentation methods are 
those methods that use eigenvectors based on an affinity matrix built from 
pairwise pixel similarity. In this paper, we describe a new image segmentation 
algorithm using the maximum spanning tree. Our method works on the affinity 
matrix; however, instead of computing eigenvalues and eigenvectors, we show 
that image segmentation could be transformed into an optimization problem: 
finding the maximum spanning tree of the graph with image pixels as vertices 
and pairwise similarities as weights. The experimental results on synthetic and 
real data show good performance of this algorithm.  

Keywords: image segmentation, affinity matrix, maximum spanning tree. 

1   Introduction  

The objective of image segmentation and clustering is to extract meaningful regions 
out of an image. A graph theoretic approach, as an alternative to the gradient-based 
methods, is usually based on the eigenvectors of an affinity matrix [3,4,5,6,7]. The 
theoretical foundation of this development is the Spectral Graph Theory [1], through 
which the combinatorial features of a graph can be revealed by its spectra. This 
characteristic can be applied into graph partitioning and preconditioning. The typical 
eigendecompostion based segmentation work is called the normalized cuts [6]. The 
normalized cut measure incorporates the local similarity within cluster and total 
dissimilarity between clusters. The minimization of this measure is to solve the 
Rayleigh quotient, a generalized eigenvalue solving problem. However, solving a 
standard eigenvalue problem for all eigenvectors has exponential complexity and is 
very time consuming. Shi [6] made use of the sparsity of the affinity matrix and 
introduced the Lanczos method to simplify the computation of eigenvalues.  

In this paper, we give a new image segmentation algorithm using the maximum 
spanning tree [2]. Our method works on affinity matrix and addresses the physical 
meanings of an affinity matrix. Instead of computations of eigenvalues and 
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eigenvectors, we proved that the image segmentation could be transformed into an 
optimization problem: finding the maximum spanning tree of the graph with image 
pixels as vertices and pairwise similarities as weights. Section 2 describes the related 
theory and Section 3 gives the experimental results on synthetic and real data to 
illustrate the performance of this algorithm. Finally, we draw a conclusion and discuss 
future work in Section 4. 

2   Method Descriptions  

In this section, we first discuss the characteristics of affinity matrix and then define an 
optimization measure based on the weighted graph associated with an image. The 
solution to the optimization problem satisfies the clustering standard with maximal 
within-class similarity and minimum between-class similarity. 

2.1   Affinity Matrix  

The affinity matrix is a symmetric matrix and describes the pairwise pixel similarity. 
Every element jiW ,  of an affinity matrix W  represents the similarity between pixels 

i  and j . There are various definitions for the similarity measures. In general, jiW ,  

can be defined as  

e ji xx
jiW

22 2||||
,

σ−−
=                                                  (1) 

where ||.||  is Euclidean distance and σ  is a free parameter. This is somewhat similar 

to the definition to Gaussian distribution.  
The characteristics of an affinity matrix (or similarity measures) are listed as 

follows.  

1.  Symmetric property 
The affinity matrix is symmetric, that is, ijji WW ,, = . So it can be 

diagonalized.  
2.  Unit normalization  

That is, 10 , ≤≤ jiW . The similarity jiW ,  between pixels i  and j  increases as 

jiW ,  goes from 0 to 1 while the dissimilarity decreases.   

3.  Transitive property 
If pixels i  and j  are similar and pixels j  and k  are similar, then pixels i  

and k  are similar.  
4.  Coherence property 

That is, klji WW ,, ≥  holds for klji ,,,∀  if pixels i  and j  are in the same 

cluster while pixels l  and k  are in different clusters. 
5.  If similarity jiW ,  is greater than some threshold, then we say that pixels i  

and j  are similar. 
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2.2   Similarity Measure for Cluster and Whole Image 

Now, we define a similarity measure for one cluster and the whole image. If we consider 
the affinity matrix represents a weight matrix of a complete graph with all pixels as 
vertices. Then, there is a maximum spanning tree for this complete graph. Obviously, 
there is a subaffinity matrix for every cluster. We define the cluster similarity measure as 
the product of those weights in its maximum spanning tree. That is, 

∏
−

=

=
1

1

hN

i

h
ih PS                                                          (2)  

where h  represents cluster number, hN  is the number of entities (pixels) in cluster 

h , and h
iP  are weights in the maximum spanning tree of cluster h . Because of the 

symmetric, transitive, and coherence properties of affinity matrix, we can understand 
this as follows. Given a pixel p  in cluster h , in order to find all pixels in cluster h , 

we first find the pixel q  with maximum similarity to pixel p . Then we find another 

pixel not in set },{ qp , but with maximum similarity either with p  or with q . 

Repeatedly, until all pixels of cluster h  are found. We can see that this measure is 
reasonable to represent the maximum within-cluster similarity for cluster h . 

After we define cluster similarity measure, we further define a similarity S  for the 
whole image, as follows  

∏∏∏
=

−

==

==
c

h

N

i

h
i

c

h

h

h

PS
1

1

11

S
                                                (3) 

where c  is the number of clusters of image or number of segmentation components. 
For convenience, sometimes, we use log on S . We have  

∑∑∑
=

−

==

==
c

h

h
i

N

i
h

c

h

PS
h

1

1

11

logloglog S                                         (4) 

Next, we will show that to maximize the similarity measure S  is to maximize the 
within-cluster similarity and minimize the between-cluster similarity, which is 
preferred by the clustering and image segmentation. 

Proposition 1. The following optimization problem 

∏∏
=

−

=

=
c

h

N

i

h
i

h,ih,i

h

P
1

1

1

argmaxargmax S                                           (5) 

guarantees that the within-cluster similarity is maximum and the between-cluster 
similarity is minimal.  

Proof. By contradiction.  
Assume that there is a pixel p  in cluster m  is misclassified into cluster n . In the 

maximum spanning tree of cluster m , pixel p  either connects two edges in the 
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middle of the tree or connects one edge as a leaf node. Consider that the pixel p  is 

removed from the cluster m . If p  is a leaf node, then one its associated edge (also 

the weight) is removed from the maximum spanning tree. If p  is in the middle of the 

tree, then two its associated edges (also the weights) are removed from the maximum 
spanning tree. But a new edge must be added to connect the two separate parts into a 
new maximum spanning tree. When pixel p  is added into cluster n , it is either in the 

middle of the tree or exists as a leaf node. However, because of the coherence 
property of affinity matrix, the pairwise similarity between p  and any pixel in cluster 

n  is the smallest in the maximum spanning tree of cluster n , then p  can not be 

added in the middle of the maximum spanning tree of cluster n . So p  is added as a 

leaf node and one more edge (also the weight) is added onto the new maximum 
spanning tree of cluster n . 

If p  is removed as a leaf node from the cluster m , its cluster similarity measure 

mS  becomes 

r

m
m w

S
S =′                                                              (6) 

where rw  is the removed weight.  

If p  is removed as a node in the middle of the maximum spanning tree of cluster 

m , its cluster similarity measure mS  becomes 

cb

ma
m ww

Sw
S =′                                                            (7) 

where bw  and cw  are the removed weights from the maximum spanning tree and aw  

is the added new weight. From Prim’s algorithm [2] (for minimal spanning tree, but 
inverse weights of maximum spanning tree, we can use it), ba ww ≤  or ca ww ≤ . Or 

else, ba ww >  and ca ww > , aw  will be in the maximum spanning tree. 

After p  is added as a leaf node into the cluster n , its cluster similarity measure 

nS  becomes 

ndn SwS =′                                                            (8) 

where dw  is the added weight. Because of coherence property, cbard wwwww ,,,< .  

Then either, 
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Therefore, the maximum within-cluster similarity and the minimal between-cluster 
similarity are guaranteed under the above similarity measure.  

2.3   Maximum Spanning Tree 

After we define the above optimization problem, we want to solve it. We show that 
the above optimization problem can be solved by finding a maximum spanning tree 
for the complete weighted graph of an image. First, we give a brief introduction to 
Prim's algorithm, which, in graph theory, is used to find a minimum spanning tree for 
a connected weighted graph. If we inverse all weights of affinity matrix, to find a 
maximum spanning tree of the original graph is equavalent to finding the minimum 
spanning tree of the graph with new weights. So Prim's algorithm can be used to find 
a maximum spanning tree.  

Prim's algorithm is an algorithm that finds a minimum spanning tree for a 
connected weighted graph, where the sum of weights of all the edges in the tree is 
minimized. If the graph is not connected, then it only finds a minimum spanning tree 
for one of the connected components.  

The time complexity of the Prim's algorithm is |)|log|(| VEO , where || E  is 

number of edges in the graph and ||V  is number of nodes. For a complete graph, the 

number of edges 
2

)1|(|||

2

||
||

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

VVV
E . This is also the maximum number of 

edges that a graph can have. So the time complexity of the Prim's algorithm is also 

|)|log|(| 2 VVO . If we only use the transitive property of affinity matrix and compute 

the local similarity for a pixel, then there are only eight similarities for a pixel between it 
and its eight neighboring pixels. The number of edges becomes ||8|| VE =  and the 

complexity becomes |)|log|(| VVO . This will reduce the complexity considerably. On 

the other hand, the complexity to a standard eigenfunction problems takes )|(| 3VO , 

where || V  is the number of nodes in the graph.  

Next, we show that the optimization problem can be solved by finding the 
maximum spanning tree and then removing the 1−c  minimal weights.   

Proposition 2. The following optimization problem 

∏∏
=

−

=

=
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h

N

i

h
i

h,ih,i

h

P
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1

1

argmaxargmax S  

can be solved by finding the maximum spanning tree of the graph associated with the 
image and then removing the 1−c  minimal weights.   

Proof. Prim’s algorithm is used to find the maximum spanning tree. 
Searching the maximum spanning tree of the whole image starts from a pixel x  in 
some cluster m . According to coherence property of affinity matrix, the maximum 
spanning tree of cluster m  must be put into the maximum spanning tree of the image 
first. Then the maximum spanning tree of cluster m  will connect some pixel y  in 

another cluster n  through a between-cluster edge. From pixel y , the maximum 



202 Q. He and C.-H.H. Chu 

spanning tree of cluster n  is put into the maximum spanning tree of the image next. 
Repeatedly, all maximum spanning trees of clusters will be put in the maximum 
spanning tree of the image. The 1−c  minimal weights connect those maximum 
spanning trees of c  clusters into the maximum spanning tree of the whole image. 
Therefore, we obtain the solution  
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where 

∏
−

=

=
1

1

N

k
kTT  is the product of all weights in the maximum spanning tree of the 

whole image. lw  are the 1−c  minimal weights.   

3   Experimental Results 

We test our algorithm using synthetic data and real data. The synthetic data are binary 
data, generated by drawing white squares on the black background. The real data is a 
kid picture. The number of clusters (components) is give as prior here. The selection 
of number of clusters is a model selection problem that depends on the application, 
and is beyond the scope of our discussion here.  

Test on synthetic data 

The synthetic data are a picture with two white squares on the black background. The 
similarity is computed using Equation 1 based on intensity values. We chose .1.0=σ  
Then the within-class similarity is  

1
01.02||11||1.02||00||2|||| 222222

====
⋅−−⋅−−−−

eeee ji xx σ
                   (12)  

and the between-class similarity is 

0
501.02||01||2|||| 2222

≈==
−⋅−−−−

eee ji xx σ
                               (13)                                

For the data with two white squares, the maximum spanning tree of the image has 
two edges with zero weights. All other edges have weight one. The zero weight edges 
are two minimal weights and separate the maximum spanning tree of the image into 
three spanning trees. One of the new spanning trees represents the background and the 
other two represent two foreground squares. 

The segmentation results are shown in Figure 1. We can see that we obtain perfect 
results.   
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(a)               (b)                   (c)                    (d) 

Fig. 1. Image segmentation on synthetic data. (a). the original image (b). the segmented 
background (white part) (c). the first segmented square (white part) (d). the second segmented 
square (white part). 

Test on real data 

The real data is a kid picture. The similarity is computed using Equation 1 based on 
average values of three channel values. We still chose .1.0=σ  The segmentation 
results are shown in Figure 2. The results are reasonable. Since boundary contours of 
kid face and shirt are not consistent with the background and foreground (kid face or 
shirt), they can be clearly separated as we chose 5 components.   

In real images, because of noise and outliers in cluster, some within-cluster 
similarities are very small. Correspondingly, some very small weights do not 
represent the between-cluster separation weights. In practice, we follow the order of 
edges from the Prim’s algorithm and pick those edge weights with considerable 
differences from (viz. smaller than) its previous and afterwards edge weights as the 
between-cluster separation edges. This method works robustly for real images. In 

practice, the 2χ -statistic [4] for histograms may give a better similarity measure for 

color and texture.  

 

 
(a) 

             
(b)              (c)              (d)              (e)            (f) 

Fig. 2. Image segmentation on kid picture. (a). original image (b). the segmented background 
(white part) (c). the segmented kid face (white part) (d). the segmented shirt (white part) (e,f). 
the segmented contours (white part). 

4   Conclusions 

In this paper, we presented a new graph-based image segmentation algorithm. This 
algorithm finds the maximum spanning tree of the graph associated with the image 
affinity matrix. Instead of solving eigenvalues and eigenvector, we proved that the 
image segmentation could be transformed into an optimization problem: finding the 
maximum spanning tree of a graph with image pixels as vertices and pairwise 
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similarities as weights. In our future work, we will explore different similarity 
measures and test the segmentation algorithm on more data. 
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Abstract. Let us consider a two-dimensional linear constraint C of the
form ax + by ≤ c with integer coefficients and such that |a| ≤ |b|. A
constraint C′ of the form a′x + b′y ≤ c′ is equivalent to C relative to a
domain iff all the integer points in the domain satisfying C satisfy C′ and
all the integer points in the domain not satisfying C do not satisfy C′.
This paper introduces a new method to transform a constraint C into an
equivalent constraint C′ relative to a domain defined by {(x, y)|h ≤ x ≤
h + D} such that the absolute values of a′ and b′ do not exceed D. Our
method achieves a O(log(D)) time complexity and it can operate when
the constraints coefficients are real values with the same time complexity.
This transformation can be used to compute the convex hull of the integer
points which satisfy a system of n two-dimensional linear constraints in
O(n log(D)) time where D represents the size of the solution space. Our
algorithm uses elementary statements from number theory and leads to
a simple and efficient implementation.

Keywords: Linear constraint, integer convex hull, Bezout identity, log-
arithmic time complexity, continued fraction.

1 Introduction

Given a two-dimensional linear constraint C of the form ax + by ≤ c with in-
teger coefficients, the size of the constraint corresponds to the maximum of
the absolute value of its coefficients. We suppose that we have |a| ≤ |b|, so
the size of the constraint is equal to |b|. Considering the domain defined by
{(x, y)|h ≤ x ≤ h + D}, the two linear constraints C and C′ are equivalent rela-
tive to this domain iff all the integer points in the domain satisfying C satisfy C′

and all the integer points in the domain not satisfying C do not satisfy C′. If we
focus on the integer points included in the domain and satisfying the constraint
C, we can reduce this constraint relative to the domain. This reduction consists
in transforming the constraint C into an equivalent constraint C′ such that the
size of C′ does not exceed the size D of the domain.

Such a reduction can be useful in integer linear programming. Indeed, given
a set of two-dimensional linear integer constraints, the solution space is defined
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by the set of points satisfying these constraints. If the solution space is bounded,
it is included in a domain defined by {(x, y)|h ≤ x ≤ h + D, h′ ≤ y ≤ h′ + D}.
We can first reduce the constraints relative to the domain so that the size of
the reduced constraints does not exceed D and then compute the convex hull of
the integer points included in their solution space. Computing the convex hull
of the integer solutions of a set of linear constraints is a well-studied problem.
The first algorithm was proposed by Schrijver([10]). The algorithm successively
approximates the integer convex hull and it is guaranteed to terminate in a fi-
nite number of iterations. However, the time complexity is exponential in the
size of the input. Polynomiality of two-variable integer programming problem
was established by Hirschberd and Wong in [3] and by Kannan in [4] for spe-
cial cases. Scarf established it in the general case in [8] and [9]. Lenstra proved
in [6] that integer programming in arbitrary fixed dimension can be solved in
polynomial time. The best worst-case time complexity algorithm we know to
compute the integer convex hull is proposed by Harvey (see [2]). His algorithm
has a O(n log(Amax)) time complexity in the worst case where Amax denotes
the maximal size of the constraints and where n denotes the number of con-
straints in the set. Thus, we can reduce each constraint relative to the domain in
O(log(D)) time and then compute the integer convex hull of the solution space
in O(n log(D)) time complexity in the worst case using Harvey’s algorithm.

In Sec. 2, we recall some notions from number theory. Then, in Sec. 3, we
introduce some definitions. We describe Harvey’s algorithm and our approach to
compute the integer convex hull between two constraints in Sec. 4. In Sec. 5, we
compare the time complexity of the two methods when they are used to reduce
a constraint.

2 Number Theory

2.1 Bezout’s Identity

In number theory, the Bezout’s identity is a linear Diophantine equation. It
states that if a and b are non-zero integers, then there exist two integers x and
y, called Bezout numbers, such that ax + by = gcd(a, b) where gcd(a, b) denotes
the greatest common divisor of a and b. More generally, the linear Diophantine
equation ax + by = c admits integer solutions iff the gcd of a and b divides c.
The Bezout numbers x and y of the equation ax + by = c can be determined
with the extended Euclidean algorithm. The set of solutions is given by:

{(

x0 +
kb

gcd(a, b)
, y0 − ka

gcd(a, b)

)

| k ∈ Z

}

(1)

You can consult [7] for more details on Bezout’s identity and the extended
Euclidean algorithm. A vector u = (ux, uy) is called irreducible iff gcd(ux, uy) is
equal to one.

Definition 1. Let u = (u1, u2) denote an irreducible vector. A Bezout vector of
u is a vector v = (v1, v2) with integer coordinates such that u ∧ v = ±1, where
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u∧v is equal u1v2−u2v1. The value u∧v corresponds to the z component of the
cross product of u and v and it is the signed area of a parallelogram generated by
u and v (this means that v is an irreducible vector for which the parallelogram
(0, u, u + v, v) contains no integer points in its interior).

We can easily find such a vector by using the extended Euclidean algorithm.

Example 1. Let u denote the vector (3, 2), let V denote the set of the Bezout
vectors of u, then: V = {(1, 1) + ku|k ∈ Z}

2.2 Continued Fractions

Definitions and Properties We present the definition of continued fractions
and some of their properties (see [1] for a more detailed introduction).

Definition 2. The simple continued fraction decomposition of a real number x
corresponds to:

x = a0 +
1

a1 + 1
a2+

1
a3+ 1

···

where a0 denotes an integer value and where ai denotes a strictly positive integer
value for all i ≥ 1. We usually use the notation x = [a0, a1, a2, · · ·] where the ai

are called the partial quotients of x.

The principal convergents of x correspond to its rational approximations pk/qk.
The two convergents p0/q0 and p1/q1 are respectively set to 0/1 and 1/0 whereas
the others are obtained by truncating the continued fraction decomposition after
the k-th partial quotient. The numerator and the denominator of the principal
convergents are computed as follows:

{
p0 = 0 p1 = 1 pk+2 = pk + akpk+1

q0 = 1 q1 = 0 qk+2 = qk + akqk+1
(2)

Each convergent of odd order is less than the whole continued fraction and
each convergent of even order is greater than the whole continued fraction. Each
convergent is closer in value to the whole continued fraction than the preceding.
The intermediate convergents of two principal convergents pk/qk and pk+2/qk+2

are defined as:

pk + ipk+1

qk + iqk+1
, i = 1 · · ·ak − 1 (3)

Let SO (resp. SE) denote the series defined by all the principal and the in-
termediate convergents of odd (resp. even) order. If x is a rational number then
the last term of one of the two series is not equal to x. The rational number x is
added to the end of this series. Let us enunciate a useful proposition (see [1] for
the proof).
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Proposition 1. Let AI denote the rational number which is less (resp. not less)
than a real number B, which most closely approximates B and such that its
denominator does not exceed an integer value d. The rational number AI is the
term of the series SO (resp. SE) of B with the greatest denominator which does
not exceed d.

Example 2. We want to find the rational number whose denominator does not
exceed 60 and which is the best approximation of 779/207. We have 779/207 =
[3, 1, 3, 4, 2, 5]. The odd convergents are 0/1, 3/1, 15/4, 143/38 and the even con-
vergents are 1/0, 4/1, 64/17, 779/207. It follows the two series:

SO =
0
1
,
1
1
,
2
1
,
3
1
,
7
2
,
11
3

,
15
4

,
79
21

,
143
38

,
779
207

SE =
1
0
,
4
1
,
19
5

,
34
9

,
49
13

,
64
17

,
207
55

,
350
93

,
493
131

,
636
169

,
779
207

We deduce that the rational number 207/55 in SE is the best approximation of
779/207, which is greater than 779/207 and whose denominator does not exceed
60. The rational number 143/38 in SO is the best approximation of 779/207,
which is less than 779/207 and whose denominator does not exceed 60.

Geometrical Interpretation. We can establish a correspondence between a
rational number a/b and an integer vector of coordinates (b, a) in the Euclidean
plane. As a result, the two series SO and SE approximating the rational number
p/q corresponds to two series of integer vectors in the Euclidean plane approxi-
mating the integer vector (q, p). We can interpret Prop. 1 in the Euclidean plane.
The rational number which most closely approximates the rational number p/q
such that its denominator does not exceed d corresponds in the Euclidean plane
to the integer vector which most closely approximates the vector (q, p) such that
its abscissa does not exceed d. The two series SO and SE interpreted in the
Euclidean plane are called Klein’s polygonal lines (see [5]). Figure 1 shows an
example of the series SO and SE where p/q = 4/11 and d = 6 interpreted in the
Euclidean plane. In this example, P = (5, 2) and Q = (3, 1) correspond to the
best approximations of the vector (11, 4) and whose abscissa does not exceed 6.

3 Reducing the Coefficients of a Linear Constraint

3.1 Introduction

First, we introduce some notations. The notation �·� denote the floor function
and the notation �·	 denote the ceiling function. Let C denote a two-dimensional
linear constraint of the form ax+ by ≤ c where a, b and c are integer values. The
support line of the constraint C is the straight line of the form ax + by = c. Let
A denote the size of the constraint C, A is defined as the value max{|a|, |b|}. We
suppose that we have |a| ≤ |b| and so the size of C is equal to |b|. Let K denote
a domain defined by {(x, y)|h ≤ x ≤ h + D}. The value D corresponds to the
size of the domain.
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(11, 4)

d = 6

Q

P

Fig. 1. Example of Klein’s polygonal lines for p/q = 4
11

and d = 6

3.2 Equivalent and Reduced Constraints

We first define the equivalence and the reduction of a linear constraint relative
to the domain K.

Definition 3. The constraint C′ of the form a′x + b′y ≤ c′ is equivalent to the
constraint C relative to the domain K iff for all integer point (x, y) in K we
have:

ax + by ≤ c⇔ a′x + b′y ≤ c′

Definition 4. The constraint C′ corresponds to a reduction of the constraint C
relative to the domain K iff C′ is equivalent to C relative to K and max{|a|, |b|}
does not exceed D.

To find a reduced constraint C′ of C relative to the domain K, we first compute
the lower border of the convex hull of the integer points located above the support
line of C and in the domain K. Then, we compute the upper border of the convex

x ≥ h x ≤ h + D

upper convex hull
border

border
lower convex hull

critical support
lines

C

Fig. 2. Example of a reduction of constraint
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hull of the integer points located below the support line of C and in the domain
K. The support line of the reduced constraint C′ corresponds to one of the two
critical support lines1 of these borders (see Fig. 2). Each convex hull border has
at most 1 + log(D + 1) vertices (see [12]) and we compute one of their critical
support lines in O(log(D)) time (see [11]).

3.3 Computing the Convex Hull of Integer Solutions

Let S = {Ci}1≤i≤n denote a set of n two-dimensional linear integer constraints.
Let Amax denote the maximum of the size of each constraint Ci, i = 1, · · · , n.
We suppose that the set of solutions of S is bounded. As a result, it is included
in a domain {(x, y)|h ≤ x ≤ h + D, h′ ≤ y ≤ h′ + D}. We can transform each
constraint Ci of S into a reduced constraint C′

i relative to the domain defined
by {(x, y)|h ≤ x ≤ h+D} or to the domain defined by {(x, y)|h′ ≤ y ≤ h′ +D}.
Let S′ denote the set of reduced constraints, the size of each constraint does not
exceed D. We can apply Harvey’s algorithm on S′ and compute the convex hull
of the set of integer solutions in O(n log(D)) time.

4 Integer Convex Hull between Two Constraints

We consider the problem of computing the convex hull of integer points satisfying
two linear integer constraints C1 and C2 respectively of the form a1x + b1y ≤ c1

and a2x + b2y ≤ c2. Let A1 (resp. A2) denote the size of C1 (resp. of C2), then
Amax denotes the maximum value of A1 and A2. As we focus on integer points
satisfying the constraints, for j ∈ {1, 2}, if the gcd of aj and bj is not equal to
one, we replace w.l.o.g. the inequality of the constraint Cj by aj/ gcd(aj , bj) x+
bj/ gcd(aj , bj) y ≤ �cj/ gcd(aj , bj)� (the support line of the constraints passes
through integer points). We describe Harvey’s algorithm [2] and our approach
which both run in O(log(Amax)) time by considering that arithmetic operations
on integers take O(1) time. Contrary to Harvey’s algorithm, our approach does
not use unimodular transformations and this entails a better time complexity
for the problem of reduction as we see afterwards.

4.1 Harvey’s Algorithm

Harvey’s algorithm assumes that the angle between C1 and C2 is less than π (i.e.
a1b2−b1a2 > 0), or it swaps C1 and C2. It first transforms the constraint C2 into
a vertical one and it sets the origin to an integer point lying on C1. For this, it
applies a unimodular transformation [α β|γ δ] such that [a1 b1|a2 b2] · [α β|γ δ] =
[t u|1 0] where αδ − βγ = ±1 (unimodularity), t ≤ 0 and u > 0. In order to find
the coefficients of the matrix, it uses the extended Euclidean algorithm on the
coefficients of C2. Then, it translates the coordinate system so that the origin
becomes the integer point P defined as follows: P lies on the support line of

1 Critical support lines of two convex polygons are straight lines tangent to both
polygons, such that the polygons lie on opposite sides of the lines.
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C1, it satisfies C2 and it has the greatest abscissa. The constraints C1 and C2

become respectively tx + uy ≤ 0 and x ≤ d. It then computes in clockwise
order the vertices of the convex hull of integer points satisfying C1 and C2. The
first vertex corresponds to the origin. In order to determine the first edge of the
hull, it uses the geometrical interpretation of Prop. 1. If the new edge intersects
the support line of C2 at an integer point, the problem is solved. Otherwise, it
iterates with a new constraint C1 supported by the last edge. Note that it does
not have to compute the Klein’s polygonal line for the new constraint because it
is included in the initial polygonal line. Then, it translates the coordinate system
so that the origin becomes the last determined vertex. The determination of the
unimodular matrix takes O(log(A2)) time and the translation of the coordinate
system at the first iteration runs in O(log(A1)) time. Harvey proves that its
algorithm runs in O(log(Amax)) time.

4.2 A Different Approach

We present our approach. We successively determine the vertices (Ki)1≤i≤m of
the convex hull from the support line of C1 to the support line of C2. When
we find the i-th vertex Ki of the convex hull we determine the vertex Ki+1

by looking for an integer point satisfying C1 and C2 and such that the angle
between the two vectors Ki−1Ki and KiKi+1 is minimal. We do not succeed in
finding such a point in a constant number of operations. Thus, we iteratively
compute candidate points Pij located in a search region depending on Ki. When
this point is a vertex of the convex hull, we have Ki+1 = Pij . Else, we reduce
the search region and we iterate. The (i, j)-th iteration corresponds to the j-th
iteration after determining the i-th vertex of the convex hull Ki. Let Ωuijvij

denote the search region at the (i, j)-th iteration. This region corresponds to the
integer points obtained by positive linear integer combination of the two vectors
uij and vij , relative to the location of the vertex Ki. We can describe this set
as: Ωuijvij = {(x, y) ∈ Z

2|(x, y) = Ki + αuij + βvij , (α, β) ∈ N
2\(0, 0)}. At

the (i, j)-th iteration, the vector vij always corresponds to the Bezout vector of
uij such that Ki + vij satisfies the two constraints C1 and C2 and such that
Ki + vij + uij does not satisfy the constraint C2. Such a vector is called a valid
Bezout vector. We consider two different configurations according to whether the
value of the dot product of vij and (a2, b2) is strictly positive or strictly negative.
We explain later (see remark 1) that the case where the dot product is equal to
zero is trivial. At each iteration, the straight line segment [Ki, Ki+uij ] intersects
the support line of the constraint C2 (this last property is verified afterwards).
Let B (resp. B′) denote the integer point which lies on the support line of C1,
which satisfies (resp. does not satisfy) the constraint C2 and which is the closest
point to the support line of C2. The integer point B corresponds to the first
vertex of the convex hull, so we set K1 to B. Moreover, we set the vector u11 to
the vector BB′.

First Configuration. In this configuration, the dot product of vij and (a2, b2)
is strictly positive. We show that in this case the candidate point corresponds
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to the vertex Ki+1 of the convex hull. Let us suppose we enter in the (i, j)-th
iteration. Let Iij denote the intersection of the support line of C2 and the straight
line of direction vector vij passing through Ki. The configuration implies that
Iij is equal to Ki + βvij where β is a positive value greater than one. We set
the candidate point Pij to Ki + �β�vij . The candidate point Pij corresponds
to the (i + 1)-th vertex of the convex hull, named Ki+1. Indeed, let Jij denote
the intersection of the support line of C2 and [Ki, Ki + uij ]. By definition of
the Bezout vector vij , no integer point lies in the triangle (Ki, Jij , Iij), except
between the points Ki and Pij (see Fig. 3.a). When Ki+1 lies on the support
line of C2, the algorithm finishes. Otherwise, we iterate the algorithm with a new
constraint C1 supported by KiKi+1. We set the vector ui+1 1 to vij . Notice that,
as claimed in the previous section, the straight line segment [Ki+1, Ki+1+ui+11]
intersects the support line of C2. Otherwise, the integer point Ki+1 would not
be a vertex of the convex hull.

Second Configuration. In this configuration, the dot product of vij and
(a2, b2) is strictly negative. We determine the candidate point Pij of the (i, j)-th
iteration. As we cannot decide in a constant number of operations whether this
point is a vertex of the convex hull, we iterate the algorithm with a reduced
search region. Indeed, this new search region could contain a better candidate
point Pi j+1. This means that the angle between uij and KiPi j+1 would be
smaller than the angle between uij and KiPi j . Let Iij denote the intersection of
the support line of C2 and the straight line of direction vector vij passing through
Ki + uij . The configuration implies that Iij is equal to Ki + uij + βvij where
β denotes a positive value greater than one. We determine the integer point
Pij = Ki + uij + �β	vij (see Fig. 3.b). We set the vector ui j+1 to KiPij − vij

and we iterate with a new constraint C1 supported by the straight line segment
[Ki, Ki + ui j+1]. As the support line of C2 intersects the straight line segments

C2

Iij

C1

Ki

uij

ui+1 1

Jij
vij

Pij = Ki+1

(a) First configuration

integer point

C1

Pij

Iij

C2

uij+1vij

Ki

uij

vij+1

(b) Second configuration

Fig. 3. The two configurations of our algorithm
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[Ki+ui j+1, Ki+ui j+1+vij ] and [Ki, Ki+uij ], we can conclude that the straight
line segments [Ki, Ki + ui j+1] and the support line of C2 intersect. Notice that,
at the (i, j + 1)-th iteration, the vector vi j+1 becomes uij + �β	vij . It means
that the cross product vi j+1 ∧ vij is equal to one. As a result, at each iteration
in the second configuration the angle between (a2, b2) and vij strictly decreases
and so in a finite number of iterations in the second configuration we encounter
the first configuration.

Remark 1. Notice that the case where the dot product of vij and (a2, b2) is equal
to zero is trivial. At the (i, j)-th iteration, let L1 (resp. L2) denote the straight
line of direction vector vij passing through Ki (resp. Ki + uij). By definition of
Bezout vector, no straight line parallel to L1 and passing through integer points
strictly lies between L1 and L2. If the dot product of vij and (a2, b2) is equal to
zero, then the support line of C2 is parallel to vij . As a result, the support line
of C2 passes through Ki or through Ki + uij and the algorithm finishes.

Complexity Analysis. Our algorithm can be summed up as follows. The func-
tion Intersection(P,u,C) computes the floor value and the ceiling value of β such
that the point P + βv lies on the support line of the constraint C. This function
runs in constant time.

ALGORITHM FOR THE INTEGER CONVEX HULL BETWEEN TWO CONSTRAINTS:
0 K1 ← B
1 u11 ← BB′

2 v11 ←BezoutVector(u11) IF (v11 · (a1, b1) > c1) v11 ← −v11

3 (�α�, �α	)← Intersection(K1 + v11, u11, C2)
4 v11 ← v11 + �α�u11

5 i← 1 j ← 1
6 WHILE ((a2, b2) ·Ki �= c2)
7 WHILE(SECOND CONFIGURATION)
8 (�β�, �β	)← Intersection(Ki + uij , vij , C2)
9 ui j+1 ← uij + (�β	 − 1)vij

10 vi j+1 ← uij + �β	vij

11 j ← j + 1
12 (�β�, �β	)← Intersection(Ki, vij , C2)
13 Ki+1 ← Ki + �β�vij

14 ui+1 1 ← vij

15 (�α�, �α	)← Intersection(Ki− uij , ui+1 1, C2)
16 vi+1 1 ← −uij + �α�ui+1 1

17 i← i + 1 j ← 1

The computation of a valid Bezout vector of u11 and the computation of the
first vertex runs in O(log(A1)) time. Then, each iteration in the first or in the
second configuration runs in constant time. For the complexity analysis, we have
to estimate the number of iterations of our algorithm. We show afterwards that
our algorithm describes the convex hull of two linear constraints in O(log(Amax)).
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Let w denote an integer vector lying on the support line of C2 such that w is
irreducible and such that for all integer point P not satisfying C1 there exists a
positive integer value γ such that P + γw satisfies C1. At the (i, j)-th iteration,
let Aij denote the area defined by the following equalities: Aij = uij∧w. We first
consider that at the (i, j)-th iteration the points are in the second configuration.
According to our algorithm, we determine a candidate point Pij and we begin
a new iteration where ui j+1 is equal to uij + γvij and vi j+1 is equal to uij +
(γ + 1)vij , γ ≥ 1. At the (i j + 1)-th iteration, if we are again in the second
configuration, it means that the cross product vi j+1∧w is negative and so vij∧w
is less than −uij ∧ w/(γ + 1). The area Ai j+1 corresponds to the cross product
ui j+1 ∧w and admits an upper bound. Indeed, Ai j+1 is less than Aij/γ + 1. As
γ + 1 is greater than two, Ai j+1 is less than the half of Aij . In conclusion, in
this configuration we have: Ai j+1 ≤ Aij/2. If we are in the first configuration
at the (i, j)-th iteration, we determine the vertex Ki+1 in a constant number of
operations and we begin the (i + 1, 1)-th iteration where ui+1 1 is equal to vij .
It means that the cross product w ∧ (vij − uij) is strictly positive and so that
vij ∧ w is strictly less than uij ∧ w. As Aij is equal to uij ∧ w and Ai+1 1 is
equal to vij ∧ w we conclude that Ai+1 1 is strictly less than Aij . As a result,
the number of iterations in second configuration is bounded in O(log(Amax))
and the number of iterations in first configuration is bounded by the number
of vertices in the hull. As the number of vertices is logarithmic relative to the
length of the intersection (see [12]), we conclude that our algorithm computes
the full convex hull in O(log Amax).

5 Reducing Linear Constraints

We recall that we consider a two-dimensional linear integer constraint C of the
form ax+by ≤ c where |a| ≤ |b|. We want to reduce this constraint relative to the
domain of size D defined by {(x, y)|h ≤ x ≤ h+D}. Let CL denote the constraint
of the form −x ≤ h and let CR denote the constraint of the form x ≤ h + D. In
this section, we study the time complexity of the two previous algorithms when
they are used to reduce the constraint C. We show that Harvey’s algorithm
always runs in O(log(A)) time when our approach runs in O(log(D)) time. Let
CHA (resp. CHB) denote the lower (resp. upper) border of the convex hull of
integer points located above (resp. below) the support line of C.

5.1 Using Harvey’s Algorithm

We know that a reduced constraint C′ of C passes at least through one vertex
of CHA or of CHB. Indeed, by definition of equivalent constraints, the support
line of the reduced constraint lies between these two convex hulls. Moreover, the
size of the reduced constraint does not exceed D and so its support line has to
pass at least through one vertex of the convex hulls. As a result, to compute a
reduced constraint, Harvey’s algorithm has to find at least one vertex of these
convex hulls. W.l.o.g., we suppose that it begins by computing CHA between the
constraints CL and C. Suppose that the angle between CL and C is less than π.
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In this first case, the algorithm applies a unimodular transformation to set (a, b)
to (1, 0). We know that the computation of the transformation matrix leads to
a O(log(A)) time complexity. Suppose now that the angle between CL and C is
strictly greater than π. In this second case, no transformation is needed but the
convex hull is computed from one integer point lying on the support line of C.
The computation of the first vertex lying in the domain K takes O(log(A)) time
in the worst case because it implies the computation of a Klein polygonal line
relative to the coefficients of C. As a result, such a configuration also leads to a
O(log(A)) time complexity.

5.2 Improving the Time Complexity

To compute a reduced constraint with our method, we compute the convex hulls
CHA and CHB and we determine a critical support line of the two convex hulls.
We begin by computing the convex hull CHA. To do that, we compute the con-
vex hull of integer points lying between the support lines of CL and C until we
find a candidate point which does not lie in the domain. Then, we compute the
integer convex hull between the last computed candidate point and CR. For all
constraint C, there exists a constraint C′ which is equivalent to C and whose
size does not exceed D. We show that our algorithm computes the convex hull
of integer points which are included in the domain and which satisfy C or C′

with the same time complexity. As our algorithm computes this last convex hull
in O(log(D)) time, it means that our algorithm computes the convex hull of the
constraint C in O(log(D)) time too. Moreover, you can notice that our algorithm
does not need the constraint C to have integer coefficients. At the (i, j)-th iter-
ation, let uij and vij (resp. u′

ij and v′ij) denote the vectors defining the search
region during the computation of the hull of C (resp. C′). At the first iteration,
u11 and v11 are equivalent to u′

11 and v′11 by definition of equivalent constraints.
Suppose that at the (i, j)-th iteration C is in the first configuration. Thus, C′

is also in the first configuration and the next vertex of the convex hull is the
same for C and C′. Suppose now that at the (i, j)-th iteration C is in the second
configuration. Thus, for all positive integer value α the points Ki + αvij satisfy
C. We determine the candidate point Pij which is equal to Ki + uij + γvij . For
the same reason as above, the points Ki +αvij also satisfy C′. As a result, either
the constraint C′ is also in the second configuration and the candidate point
Pij is the same as C, or the vector vij lies on C′. In this particular case, we
determine the next vertex of the hull of C′ which is equal to Ki + δvij such that
this point lies in the domain. Note that in this case the candidate point Pij of C
cannot lie both in the domain and between the support line of C and the support
line of C′. As a result, we begin a (i, j + 1)-th iteration with ui j+1 = KiPij ,
vi j+1 = vij and the constraint CR. The (i, j + 1)-th iteration corresponds to
a first configuration and so we determine a new vertex Ki+1 which is equal to
Ki + δvij . In conclusion, our algorithm computes the convex hull between the
constraint CL and the constraint C or C′ in a domain of size D with the same
time complexity O(log(D)). When we find a candidate point which does not lie
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in the domain, we compute the convex hull between the constraint CR and this
point. This second step also runs in O(log(D)) time.

6 Conclusion

Given a two-dimensional linear integer constraint, we describe a method to re-
duce the constraint into an equivalent one relative to a domain of size D such
that the size of the reduced constraint does not exceed the size of the domain.
For this, we compute the border of the convex hull of integer points lying in the
domain which are located above and below the support line of the constraint.
Each critical support line of the two convex hulls corresponds to the support line
of a reduced constraint. We prove that our method runs in O(log(D)) time con-
trary to the other approaches which run in O(log(A)) time. Moreover, we show
that such a transformation is useful to compute the integer convex hull of the
solution space of a set of linear integer constraints in O(n log(D)) time. Indeed,
if the solution space is bounded then it is included in the domain defined by
{(x, y)|h ≤ x ≤ h+D, h′ ≤ y ≤ h′ +D}. We can reduce each constraint relative
to the domain and then compute the integer convex hull of the solution space.
The source code for the computation of the integer convex hull between two lin-
ear constraints is available on www.esiee.fr/~charriee/integerConvexHull.
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Abstract. For a mixed integer programming formulation of the prob-
lem of registering two medical images we propose a geometric Branch &
Bound algorithm, which applies a geometric branching strategy on the
transformation variables. The results show that medium sized problem
instances can be solved to global optimality in a reasonable amount of
time.

1 Introduction and Literature Review

Medical images have become an indispensable tool for physicians for diagnosis
as well as treatment and operation planning. Modern imaging techniques and, in
particular, their combination can provide more and more detailed information
that allows for a fast advancement of diagnosis and operation techniques. Pre-
operative NMR-, CT- and PET-scans, for example, of a patients brain can be
combined with intra-operative NMR-scans to show the progress of the operation
as well as a possible brain shift, hence allowing for an online adaptation of the
operation plan [7].

Registration problems have attracted much attention in the recent literature,
see, for example, [9], [16] and [10] for recent surveys. The different solution ap-
proaches can be divided into two major classes: On one hand, algorithms using
voxel properties work directly on the gray values of the considered images. Maybe
the most common voxel based similarity measure is mutual information [15]. On
the other hand, feature based registration methods require segmentation as a
preprocessing step in order to extract the relevant information for the registra-
tion procedure. Feature points, lines, or surfaces are extracted from the images,
and their properties are used to define a similarity measure between the images
in this case [16].

In this paper, we focus on the second class of methods, namely a mixed integer
programming formulation of the point matching problem that combines outlier
handling techniques with appropriate registration objectives and constraints.
Assuming that the correspondences between feature points in the respective
images are not known a priori, the registration process consists of two coupled
subproblems: Find corresponding feature points and search for a mapping such
that the assigned points are mapped onto each other. In the following, a brief
literature review of related approaches is given.
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Mount et al. suggest the application of partial Hausdorff distances given by
δk
H(A,B) = kth

a∈A minb∈B ‖a− b‖, where the operator kth (1 ≤ k ≤ |A|) returns
the k-th smallest value of the argument set [11]. The authors argue that the
use of the kth smallest distance enables the user to specify a percentage of out-
lier points that should be rejected. However the value k can only be guessed
and is not determined by the algorithm. The resulting optimization problem is
solved using a geometric branch and bound algorithm to ε-global optimality.
B&B methods are frequently used in the field of integer or mixed integer pro-
gramming. Geometric B&B is an implementation of the B&B idea for continuous
optimization. Different from combinatorial B&B algorithms, the computational
complexity of geometric B&B algorithms depends on the required solution ac-
curacy. An overview with a comparison of geometric B&B techniques related to
matching problems is given in [2,3].

One of the computationally fastest, however, heuristic methods to handle the
coupled assignment and transformation problem in point matching is the iter-
ative closest point algorithm (ICP) [1]. Instead of trying to solve the two sub-
problems simultaneously, they are considered separately and iteratively: For each
feature point in the reference data set, search for the closest points in the other
data set. With the obtained correspondences, find a transformation function that
minimizes the distances between assigned points, and iterate. The main disad-
vantage of this algorithm is that it converges in general only to a stationary point
of the problem. Even under some additional regularity assumptions, it can only
be guaranteed to yield local optimality [13]. However, due to its computational
efficiency the ICP algorithm is used in many applications where computation
time is crucial, and whenever a good starting solution is known, see [14] and
[8]. The robust point matching approach (RPM) [5] can be seen as a further
advancement of ICP-based algorithms. A mixed integer programming problem
is formulated where binary variables represent the assignments between pairs of
points, and continuous variables describe the non-rigid transformation function
sought. In order to solve the resulting mixed integer programming problem, the
authors suggest to iterate between the solution of assignment subproblems and
optimizing the transformation function (in their implementation these functions
are modelled by thin plate splines). In addition, a “softassign” approach is used
(temporarily and partially relaxing the integrality constraints for the assignment
variables) and deterministic annealing is applied to avoid local minima. Never-
theless, this solution method remains heuristic and global convergence can not
be guaranteed. In this paper, we suggest to combine the advantages of a global
optimization approach with applying a geometric Branch & Bound method to a
variation of the RPM [5].

2 Problem Formulation

Since the focus of this paper is on image registration rather than on image seg-
mentation, we assume that feature points Y = {yj ∈ Rd : j ∈ J }, J :=
{1, . . . , J} in the reference image, and X = {xi ∈ Rd : i ∈ I}, I := {1, . . . , I}



A Branch & Bound Algorithm for Medical Image Registration 219

in the template image have already been extracted by some available segmen-
tation method. The aim of this paper is the development of global optimization
approaches. Therefore, the distance measure used in the objective function of
our model should not be based on pre-calculated point correspondences. Instead,
the search for an optimized assignment will be performed simultaneously with
the calculation of an optimized transformation. The transformation T is con-
strained to some function space T which we assume to consist of affine or rigid
transformations only, but which could be extended to, for example, radial ba-
sis functions. Moreover, the problem formulation should be capable of handling
outliers, which are points that have (for example, due to occlusion, different dis-
play windows or segmentation errors) no correspondence in the other data set.
We therefore define assignment variables zij , i ∈ I, j ∈ J , that are used to
assign points from X to points in Y and vice versa. If a point is considered as
an outlier, it is assigned to the virtual point yJ+1 or xI+1, respectively: zij = 1
if xi is assigned to yj and zero otherwise.

By Z := (zij)i∈I,j∈J (I := I ∪ {I + 1} and J := I ∪ {J + 1}) we denote
the corresponding assignment matrix. Our overall optimization model is a slight
modification of the RPM approach [5]:

Problem 1

min
T

DRPM(T ) := min
T,Z

fRPM(T, Z) :=

min
T,Z

∑

i∈I

∑

j∈J
zij ‖yj − T (xi)‖2 + ζ2

Y

∑

j∈J
zI+1,j + ζ2

X

∑

i∈I
zi,J+1

s.t.
∑

i∈I
zij = 1 ∀j ∈ J

∑

j∈J
zij = 1 ∀i ∈ I

zij ∈ {0, 1} ∀(i, j) ∈ I × J

T ∈ T .

(1)

By ZB := {Z ∈ {0, 1}|I|×|J | :
∑

i∈I zij = 1, j ∈ J and
∑

j∈J zij = 1, i ∈ I}
we denote the set of all feasible assignments in (1).

Note that the dummy points yJ+1 and xI+1 to which outlier points can be
assigned without contributing to the distance term in the objective function
take care of the outlier handling in this formulation. However, this makes an
additional term for outlier control necessary since otherwise, zij = 0 ∀i ∈ I, j ∈
J (i.e., considering all points yj and xi as outliers) would always be an optimal
solution of the problem. Instead of adding a gratification for assigned points as
in [5], we propose to use a penalty term +ζ2

Y

∑
j∈J zI+1,j + ζ2

X

∑
i∈I zi,J+1 with

penalty parameters ζ2
Y , ζ2

X > 0 in the objective function. Note that this does not
change the structure of the problem while it facilitates the computation of lower
bounds since all terms in the objective function are now nonnegative.

One possibility to simplify the RPM problem is to separate the optimization
of the assignment variables and the optimization of the spatial transformation.
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In order to analyse the RPM problem for fixed assignment variables or for fixed
transformation, respectively, we split the mixed integer programming problem
(1) into two subproblems (2) and (3):

For a fixed transformation T ∈ T , (1) is equivalent to a generalized assignment
problem (2):

Problem 2 (Generalized Assignment Problem)

min
Z

∑

i∈I

∑

j∈J
zijdij(T ) + ζ2

Y

∑

j∈J
zI+1,j + ζ2

X

∑

i∈I
zi,J+1

s.t. Z ∈ ZB

(2)

WhereatZB is the polyhedron of feasible assignments and dij(T ) :=
∥
∥yj − T (xi)

∥
∥2

is the matrix of (constant) point distances. It is easy to see that the constraint
matrix of the generalized assignment problem (2) is totally unimodular [12]. Thus
the integrality constraints zij ∈ {0, 1} ∀i ∈ I, j ∈ J can be relaxed to zij ∈
R+, since the polyhedron ZB is integral. Therefore, the generalized assignment
problem (2) can either be solved directly using linear programming, or it can be
reformulated in terms of a transportation problem which can be efficiently solved
by means of network flow algorithms.

If, on the other hand, the assignment is fixed to some Z̄ ∈ ZB, we search for
the optimal transformation T solving (constant terms in the objective function
are omitted):

Problem 3
min

T

∑

i∈I,j∈J :z̄ij=1

‖yj − T (xi)‖2

s.t. T ∈ T .

(3)

The selection of an appropriate solution method for the least squares problem (3)
depends on the considered function space T . However, this optimization problem
is convex for all linear parameterized, finite dimensional function spaces T . In [6],
different analytical solution methods are discussed for the function space of rigid
transformations Trigid = {T : Rd → Rd : T (x) = xR + t, R ∈ SO(d), t ∈ Rd}.
Modersitzki [10] gives algorithms for general linear parameterized function spaces
as well as for thin-plate-splines .

Summarizing the discussion above we can conclude that each subproblem (for
fixed transformation variables or fixed assignment variables, respectively) can
be efficiently solved. For a fixed transformation we obtain a linear assignment
problem, and for a fixed assignment we obtain a continuous, convex optimization
problem. The combination of both remains, however, in general an NP-hard
problem.

3 Geometric Branch & Bound

Due to the high number of possible assignments it is predictable that the com-
putational expense of a B&B algorithm for the assignment variables is highly
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dependent on the number of points in the input datasets. For problems where
many feature points have to be registered a different approach appears to be
more suitable. Whereas the B&B algorithm for the assignment variables ex-
amines the logic correspondence between point sets by assigning point pairs, a
process called geometric branching analyses the geometric correspondence of the
sets by hierarchically searching the transformation space.

A geometric B&B algorithm to solve registration problems was proposed
by Mount et al. [11] for the minimization of the directed Hausdorff distance.
Given an initial subset of the search space in form of a multidimensional interval
[tmin, tmax] in the parameter space, the initial transformation cell, the algorithm
consecutively subdivides this initial interval into subintervals while calculating
lower bounds and feasible solutions (which yield upper bounds) for the subin-
terval. By comparing the lower bounds with the best solution generated so far,
intervals that cannot contain the optimal transformation can be identified and
eliminated. During the course of the algorithm the diameter of the intervals con-
sidered decreases while they are subdivided. Finally, when the diameter is small
enough, the gap between lower bounds and upper bounds will be less than a
given error tolerance ε. Then the algorithm stops and returns the best solution
generated guaranteeing optimality up to an accuracy of ε.

When applying this procedure to (1), we assume that the search space T is
given in parameterized form by using the parameterization π : P → T , t �→ Tt

with parameter space P ⊆ Rn. Additionally, let the possible transformation
parameters be bounded by a multidimensional interval Δinit = [tmin, tmax] ⊆ P .
An interval Δsub = [tsub,min, tsub,max] ⊆ Δinit defines the subproblem

min
t∈Δsub

min
Z∈ZB

∑

j∈J

∑

i∈I
zij ‖yj − Tt(xi)‖2 + ζ2

Y

∑

j∈J
zI+1,j + ζ2

X

∑

i∈I
zi,J+1 (4)

of the registration problem, which we will denote shortly as the subproblem
(Δsub). The transformations that are considered for this subproblem are T sub :=
π(Δsub), and the original registration problem corresponds to subproblem (Δinit).

Now the following geometric B&B algorithm can be formulated.

Algorithm 4 (Geometric Branch & Bound). Let points yj, j ∈ J , and xi,
i ∈ I, a search space T specified by an interval Δinit in the parameter space, an
absolute error tolerance εabs and a relative error tolerance εrel be given.

Step 1: Initialize the problem list with S :=
{
(Δinit)

}
and the initially best

objective function value with f◦ :=∞.
Step 2: Repeat while the problem list S is non-empty:

a) Remove some (Δsub) ∈ S from the problem list.
b) Generate a lower bound l for the subproblem (Δsub). If l ≥ max

{
f◦ − εabs,

f◦

1+εrel

}
, the subproblem is pruned; in this case return

to Step 2).
c) Generate a feasible solution (T, Z) of subproblem (Δsub) and de-

note its objective value by f = fRPM(T, Z). If f < f◦, the newly
generated solution is better than the current best known solution;
update f◦ := f and (T ◦, Z◦) := (T, Z).
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d) If f ≤ l, the newly generated solution is at least as good as any
feasible solution of the subproblem. The subproblem is solved to
optimality and can be pruned; return to Step 2).

e) Split the interval Δsub into two new subintervals Isub,1 and Isub,2

and insert the corresponding subproblems into the problem list S.
Step 3: Stop with (T ◦, Z◦) as approximately optimal solution.

To ensure termination of the algorithm, error tolerances εabs and εrel need to be
specified. We will discuss the issue of termination later. Thus the geometric B&B
algorithm is not an exact procedure, but the returned solution approximates the
global optimum in the following sense.

Theorem 5 (see [11]). Let (T ∗, Z∗) be a global optimum with objective value
f∗. In case of termination of the algorithm the final solution (T ◦, Z◦) with ob-
jective value f◦ satisfies: f◦ − f∗ ≤ min {εabs, f

◦εrel/(1 + εrel)}.

3.1 Computation of Lower Bounds

The efficiency of B&B methods strongly depends on the quality of the applied
bounding procedure. We consider for every point xi ∈ X the region of possible
images of xi under the transformations in π(Δsub) =

{
Tt ∈ T : t ∈ Δsub

}
. Addi-

tionally, let the function π : I0×Rd → Rd be defined by π(t, x) := Tt(x). Similar
to [11] we use the following notation. The set π(Δsub, xi) =

{
Tt(xi) : t ∈ Δsub

}

is called the uncertainty region of xi with respect to the subproblem (Δsub). By
estimating lower bounds for the distances from yj with j ∈ J to the uncertainty
regions π(Δsub, xi) with i ∈ I, a lower bound for the subproblem (Δsub) can be
generated.

Theorem 6. Let a subproblem be given by an interval Δsub ⊆ Δinit according
to (4). Let lower bounds Dl

ij ≤ ‖yj − Tt(xi)‖2 ∀t ∈ Δsub be known. Then

l := min
Z∈ZB

∑

j∈J

∑

i∈I
zijD

l
ij + ζ2

Y

∑

j∈J
zsub

I+1,j + ζ2
X

∑

i∈I
zsub

i,J+1 (5)

is a lower bound for the optimal objective value of this subproblem.

Proof. Let (Tt∗ , Z
∗) with t∗ ∈ Δsub be an optimal solution of the subproblem

and let Z ′ be an optimal solution of the optimization problem (5). This implies

l =
∑

j∈J

∑

i∈I
z′ijD

l
ij + ζ2

Y

∑

j∈J
z′I+1,j + ζ2

X

∑

i∈I
z′i,J+1

≤
∑

j∈J

∑

i∈I
z∗ijD

l
ij + ζ2

Y

∑

j∈J
z∗I+1,j + ζ2

X

∑

i∈I
z∗i,J+1

≤
∑

j∈J

∑

i∈I
z∗ij ‖yj − Tt∗(xi)‖2 + ζ2

Y

∑

j∈J
z∗I+1,j + ζ2

X

∑

i∈I
z∗i,J+1.

�
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The best possible lower bound Dl
ij is the squared distance between yj and the

uncertainty region π(Δsub, xi) of xi, i.e., Dl
ij = d

(
yj , π(Δsub, xi)

)2 = mint∈Δsub

‖yj − Tt(xi)‖2. It is not always possible to calculate this distance efficiently.
But if an interval Γi = [smin

i , smax
i ] ⊆ Rd can be found that is a bounding

box π(Δsub, xi) ⊆ Γi for the uncertainty region, a lower bound can easily be
calculated by

Dl
ij = d(yj , Γi)2 =

d∑

k=1

d2
ijk , with dijk =

⎧
⎪⎨

⎪⎩

smin
ik − yjk if yjk < smin

ik

0 if smin
ik ≤ yjk ≤ smax

ik

yjk − smax
ik if smax

ik < yjk

The observation that d(yj , Γi) ≤ d
(
yj , π(Δsub, xi)

)
is also illustrated in Figure 1.

The intervals Γi can often be calculated by using interval arithmetic. [4] describes
the use of interval arithmetic in the context of geometric B&B algorithms; for
details we refer to this publication.

xi yj

π(Δsub, xi)

Γi

d(yj , Γi)
d(yj , π(Δsub, xi))

Fig. 1. Lower bounds Dl
ij for the squared distances from a point yj to the uncertainty

region of a point xi: The best possible bound Dl
ij = d(yj , π(Δsub, xi))

2 and the bound
based on interval arithmetic Dl

ij = d(yj , Γi)
2

As a concrete example, we consider affine transformations Taffine = {T : Rd →
Rd : T (x) = xA + t, A ∈ Rd×d, t ∈ Rd} which can be parameterized linearly
by the components of A and t. As a generalization of affine transformations we
consider a linear parameterized function space (or rather a subset of it)

Tlin :=
{
Tt =

(∑

b∈B
tbkT b

)
k∈{1,...,d} : t ∈ Δinit

}

with basis functions T b, b ∈ B. The uncertainty region of xi, i ∈ I, for the
interval Δsub = [tmin, tmax] is itself an interval [smin

i , smax
i ], where

smin
ik =

∑

b∈B
T b(xi)>0

tmin
bk T b(xi) +

∑

b∈B
T b(xi)<0

tmax
bk T b(xi) ∀k ∈ {1, . . . , d}

smax
ik =

∑

b∈B
T b(xi)>0

tmax
bk T b(xi) +

∑

b∈B
T b(xi)<0

tmin
bk T b(xi) ∀k ∈ {1, . . . , d}.
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3.2 Computation of Feasible Solutions

Starting with a transformation T ∈ T sub, determine the best corresponding
assignment, and to this assignment in turn the best transformation. Note that
this can again be regarded as one iteration of an ICP algorithm with starting
solution T .

A reasonable starting solution is the transformation Ttm corresponding to the
center tm of the interval Δsub. Then compute

Z1 := argmin
Z∈ZB

∑

j∈J

∑

i∈I
zij ‖yj − Ttm(xi)‖2 + ζ2

Y

∑

j∈J
zI+1,j + ζ2

X

∑

i∈I
zi,J+1

T1 := argmin
T∈T

∑

j∈J

∑

i∈I
z1

ij ‖yj − T (xi)‖2 + ζ2
Y

∑

j∈J
z1

I+1,j + ζ2
X

∑

i∈I
z1

i,J+1.

The pair (Ttm , Z1) is a feasible solution of the subproblem (Δsub) , while (T1, Z1)
is only a feasible solution for the original registration problem (1). This is, how-
ever, not a problem since the second solution (T1, Z1) has an objective value at
least as good as the objective value of (Ttm , Z1), and thus makes the first solution
obsolete.

The generation of solutions exploits the bivariate structure of the objective
function in a similar fashion as the ICP algorithm does. Instead of restricting
the transformations to the centers of their respective intervals, the computation
of the second transformation T1 can be seen as a further alignment step that
brings the point sets closer together. Note that [11] use a different alignment
approach, that relies on a probabilistic procedure.

3.3 Control and Acceleration of the Algorithm

The order in which subproblems are considered can be influenced by the order
in which subproblems are inserted into the problem list and by the order in
which they are removed from this list. We suggest to select the subproblems
from the list according to their lower bounds. To generate new subproblems in
Step 2e) of Algorithm 4, the current subproblem with Δsub = [tsub,min, tsub,max]
is subdivided into two subproblems with Δsub,1 = [tsub,1,min, tsub,1,max] and
Δsub,2 = [tsub,2,min, tsub,2,max] by choosing a component j̄ and splitting the in-
terval into two halves. It is advantageous to split the interval in the component
j̄ that contributes the most to the size of the uncertainty region and thus to the
uncertainty of the lower bound. Let the size of the subproblem (Δsub) be defined
as the maximum size of the uncertainty regions π(Δsub, xi) := maxk(smax

ik −smin
ik )

i ∈ I, this strategy reduces the size of the subproblem as much as possible.

3.4 Termination of the Algorithm

In the beginning of Section 3 we have proven that the geometric B&B algo-
rithm returns an optimal solution up to the precision of a given error tolerance,
provided that it terminates after finitely many iterations. Because no variables
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are fixed during the branching process, but the set of feasible transformations is
halved instead, it is not obvious that the algorithm terminates in a finite num-
ber of steps. In this section we will adapt corresponding results of [11] to prove
termination of the algorithm in the setting considered in this paper.

Lemma 7 Let T be either a linear search space or the space of rigid trans-
formations in Rd. Let (T ∗, Z∗) be the global optimal solution of the registration
problem (1) with objective value f∗, and let absolute and relative error tolerances
εabs and εrel be given that satisfy εabs > 0 and εrelf

∗ > 0. Then there exists a
constant R > 0 such that subproblems of size at most R are not split any further
in Algorithm 4.

Proof. Due to the definition of the size of a rigid subproblem based on the
size of a linear subproblem, it is sufficient to consider only linear search spaces.
Therefore, let (Δsub) be a subproblem of size r for a linear search space. Denote
its lower bound by l, and denote the assignment that is used to compute this
bound by Z ′ (cf. Theorem 6). Let (T1, Z1) be the feasible solution generated
for the subproblem starting from the subproblem’s center Ttm (cf. Section 3.2).
Furthermore, let (T ◦, Z◦) be the best known solution so far (while considering
subproblem (Δsub)), and let f◦ be its objective value.

The diameter of the uncertainty region π(Δsub, xi) is at most
√

dr. This
implies

‖yj − Ttm(xi)‖2 ≤ (d(yj , π(Δsub, xi)) +
√

dr)2 ≤ Dl
ij + 2

√
dMr + dr2, (6)

where M > 0 is an upper bound for d(yj , π(Δsub, xi)). Then we obtain

fRPM(T1, Z1) ≤fRPM(Ttm , Z1) ≤ fRPM(Ttm , Z ′)
(6)

≤ l+
∑

j∈J

∑

i∈I
z′ij(2

√
dMr + dr2)

≤l + min {I, J}(2
√

dMr + dr2).

Since f∗ ≤ f◦, we have εrelf
◦ > 0 by the assumptions of the lemma. There-

fore, there exists a constant R > 0 such that min {I, J}(2√dMr + dr2) ≤
min

{
εabs, f

◦ εrel
1+εrel

}
for all r ≤ R. If the subproblem (Δsub) is subdivided into

two new subproblems, their lower bounds l1 and l2 satisfy

l1, l2 ≥ l ≥ fRPM(T1, Z1)−min {I, J}(2
√

dMr + dr2)

≥ fRPM(T ◦, Z◦)−min {I, J}(2
√

dMr + dr2)

≥ max
{

f◦ − εabs,
f◦

1 + εrel

}

.

Thus, the new subproblems will be removed in Step 2b) of Algorithm 4. �

Theorem 8. Under the assumptions of Lemma 7, Algorithm 4 terminates.
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Proof. It is sufficient to show that the size of every subproblem is at least halved
in a finite number m of subdivisions. Then m log2(Rinit/R) subdivisions are
sufficient to decrease the size Rinit of the initial subproblem (Δinit) to the size
R specified in Lemma 7.

Subproblems are split along that side of Δsub that contributes the most to
the size of the subproblem. Due to linearity, this term is decreased by half when
the subproblem is split, and in m = Bd consecutive subdivisions the size of the
subproblem is at least halved. The proof for rigid transformations can be carried
out analogously. �

The above results allow us to examine the run time of Algorithm 4. In the worst
case all subproblems have to be subdivided as long as they are not removed
according to Lemma 7. For linear search spaces this may lead to a B&B tree
depth of Bd log2(R

init/R) and a breadth of (R0/R)Bd. In this case the number of
subproblems that have to be considered grows exponentially with the dimension
and the number of basis functions. A similar dependence on the dimensionality
exists for the search space of rigid transformations.

4 Computational Results

For the solution of the generalized assignment problem (2) a primal-dual al-
gorithm based on a transportation problem formulation was applied. To solve
the least squares problem (3) for rigid transformations, an approach based on
singular value decompositions as described in [6] was used. To examine how the
algorithms handle realistic situations, we applied them to some medical exam-
ples. The 2-dimensional image data was provided within the Collaborative Re-
search Center (DFG/SFB 603) at the University of Erlangen-Nuremberg, which
we gratefully acknowledge.

Figure 2 shows an MRA (magnetic resonance angiography) and an MRI (mag-
netic resonance imaging) of the same skull. The MRA displays blood vessels
as bright spots. In the MRI, on the other hand, structures of the brain are
well visible. By applying a registration algorithm, one image can be generated
that combines the advantages of both imaging techniques. To verify that the

Fig. 2. From left to right: Reference MRA with 100 points, Template MRI with 100
points, Registered image using geometric B&B, Incorrectly registered image using the
iterative closest point procedure
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Fig. 3. Left: MRI during the surgery with 100 points. Center: MRI before the surgery
with 100 points. Bottom: Registered image using geometric B&B.

geometric B&B algorithm finds a global optimum rather than only a local one,
the originally roughly prealigned images have been rotated by 180◦.

From both images points lying on the outer contour of the skull were ex-
tracted and the 100 points with the highest curvature were chosen. To find the
rigid transformation that registers these point sets, the geometric B&B algo-
rithm was applied using a relative error tolerance of εrel = 0.1 (εabs sufficiently
large, without influence). During the registration, 1485 nodes of the B&B tree
were traversed in 139.9 seconds. To compare the resulting registration with the
outcome of a local registration algorithm, Figure 2 shows the registration ob-
tained by the B&B method as well as the registered image using the iterative
closest point algorithm.

As an example for unimodal, intra-operative registration, Figure 3 shows the
skull of a patient before and during brain surgery. In the image that was taken
during the surgery the shift of the brain due to the opening of the skull is visible.
Using rigid registration, this shift can be measured either directly by comparison
of the registered image or by applying methods for non-rigid registration to
the now preregistered image to obtain the mapping representing the shift. As
described for the example above, 100 points were generated per image. The
search space was again the space of rigid transformations. The geometric B&B
algorithm solved the problem with error tolerance εrel = 0.1 (εabs sufficiently
large) in 387.3 seconds traversing 5137 nodes of the B&B tree.

5 Conclusions and Future Research

In this paper we have demonstrated that an exact solution of the strongly non-
convex robust point matching problem for medical image registration can be re-
alized using Branch & Bound methods. The numerical results show that medium
sized problem instances in 2 dimensions can be solved to global optimality in a
reasonable amount of time. Local search methods like the frequently used iter-
ative closest point algorithm may, however, fail to find realistic solutions if the
starting solution is too far away from the global optimum.

Future research topics include the advancement of appropriate automatic
methods for the selection of (reference or feature) points in the template and
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the reference image. Moreover, a combination of exact algorithms like the dis-
cussed B&B approaches with local search or other heuristic methods seems to
be a promising approach to find very good solutions in a reasonable amount of
time also for considerably larger data sets or for higher dimensional problems.
For this purpose, an exact registration could be computed on a relatively coarse
resolution level while on finer resolution levels, local methods like the iterative
closest point algorithm are applied using the B&B result as a starting solution.
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Abstract. This paper copes with the optimization of Markov Random
Fields with pairwise interactions defined on arbitrary graphs. The set of
labels is assumed to be linearly ordered and the priors are supposed to
be submodular. Under these assumptions we propose an algorithm which
computes an exact minimizer of the Markovian energy. Our approach
relies on mapping the original into a combinatorial one which involves
only binary variables. The latter is shown to be exactly solvable via
computing a maximum flow. The restatement into a binary combinatorial
problem is done by considering the level-sets of the labels instead of the
label values themselves. The submodularity of the priors is shown to be
a necessary and sufficient condition for the applicability of the proposed
approach.

1 Introduction

Many early vision problems can be formulated as an optimization problem. In
particular, Markov Random Fields (MRFs) models have been widely used [21]
since the seminal work of Geman et al. [9]. These energies are generally a
weighted combination of two terms: the fidelity term and the prior. The first
one measures the fidelity of the reconstructed solution with the observed data
while the second one contains some knowledge on the result. It is generally hard
to find a global optimum since these energies are usually non-convex. For some
particular cases, computations are tractable using dynamic programming [2].
However for most of problems, considered energies remain difficult to optimize
in general and these optimization problems can even be NP-hard [12]. A gen-
eral practice is to use Simulated Annealing [9,21] although it may be extremely
slow in practice. This paper focus on Markovian energies that involves pairwise
interactions and any data fidelity. An algorithm that computes a global mini-
mizer of a subclass of these energies in more generality that it was previously
possible is presented. Compared to non-global optimization algorithms, global
minimization algorithms allow to study the practical performance of a model.
Besides, the approach proposed in this paper can be seen as a complementary
computational point of view to the theoretical work of Nikolova on the property
of global minimizers[8,17,18].

Let us define the problem of minimizing a Markovian energy with pairwise
interactions in the context of computer vision. Assume that images are defined
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on a set of nodes V with cardinality |V|. The value of the image u at a site
p ∈ V is denoted by up. The lattice is endowed with a neighboring system and
the neighborhood relationship between two adjacent sites p and q is denoted by
p ∼ q. Only pairwise interactions are considered, and such a clique is referred
to as (p, q) where p ∼ q. We denote by E the set of all cliques. Thus we are
interested in minimizing the following Markovian energy:

E(u|v) =
∑

p∈V
fp(up|vp) +

∑

(p,q)∈E
gpq(up, uq) , (1)

where v is the observed image, and the functions {fp} and {gpq} are respectively
the fidelity terms and the priors.

In the seminal work [19], Picard and Ratliff show how a subclass of this energy
can be optimized by computing a maximum-flow/s-t minimum-cut [1] on a graph
associated to this energy. Then Greig et. al. use this approach in [10] to study
the behavior of the Ising model for binary image restoration. In [4] Boykov et al.
applies this technique for computer vision applications along with an excellent
approximation result for the non-binary case. In [14], Kolmogorov and Zabih
give a sufficient and necessary condition for the optimization of boolean MRF
with pairwise and also triplewise interactions via s-t minimum-cut.

Extension of these approaches for exact optimization of MRFs involving more
than two labels have been tackled by some authors. Approaches assume that
labels can be linearly ordered and there are no assumptions on fidelity terms.
In [13], a graph construction is proposed for MRFs where the priors are convex
functions of the difference of labels, i.e. gpq(·− ·) where gpq are convex functions.
The convexity assumption is shown to be sufficient and necessary. In [22], a class
of MRFs whose energies can be rewritten as particular boolean MRF associated
to each level is studied. In [6], the two above classes of Markovian energies are
considered. The above assumptions allow the authors to devise a graph construc-
tion scheme for which a s-t minimum-cut yields a global minimizer minimization.
Note that the topology of the underlying graph are different for each method
but the size, i.e., the number of nodes and arcs, is the same. The optimization
approach we propose in this paper can cope with all the above cases.

In this paper it is assumed that up takes value in the discrete set discrete L ⊂
IR of cardinality |L| = L. This set is assumed to be linearly ordered, i.e., L =
{l0, . . . lL−1} with li < li+1 ∀i ∈ �0, L − 2�. We also assume that the functions
{fp} and {gpq} take values in IR and are respectively defined on the discrete
sets L and L2. Such functions will be referred to as discrete functions. In this
paper, the priors {gpq} shall be submodular functions. For any positive integer k,
a function g : Lk → IR is said submodular if and only if it satisfies the following
inequality [16]:

∀(x, y) ∈ (L2)k g(x ∨ y) + g(x ∧ y) ≤ g(x) + g(y) , (2)

where (x ∨ y) and (x ∧ y) respectively corresponds to the component-wise min-
imum and maximum between x and y, i.e., ∀p ∈ V (x ∨ y)p = min{xp, yp} and
(x ∧ y)s = max{xp, yp}. Submodularity can be seen as a general property of
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discrete functions that are analogous to convexity of functions defined on con-
tinuous domain [16].

The main theoretical contributions of this paper are the following. First, we
propose an algorithm which computes a global minimizer for MRFs with pair-
wise interactions where priors are submodular functions. No assumption is set on
data fidelity terms. Our approach relies on restating this problem into a binary
optimization problem that can be exactly solved with a maximum-flow-based
approach [4,10,14,19]. Our mapping to the binary formulation makes use of the
level sets of the labels. Second, it is shown that submodularity of the priors is a
sufficient and necessary conditions for the application is the proposed approach.
To our knowledge, these results are new and considerably extend previous avail-
able approaches for global MRF optimization. The complexity of our algorithm
is pseudo-polynomial [1].

The remainder of this paper is organized as follows. Section 2 describes how
one can we rewrite data fidelity and prior terms using the level sets of the
variables. These rewritings are the core of our restatement of the original mini-
mization problem to a binary minimization one. In Section 3 we cope with exact
optimization of MRFs with submodular priors. Finally we draw some conclusions
in Section 4.

2 Development through Level Sets

This Section is devoted to rewrite every single data fidelity term fp(·) and all
prior terms gpq(·, ·) appearing in the Markovian energy E defined by equation (1),
as a linear combination of binary energies. These restatements will be used for
optimizing exactly first order MRFs with submodular priors. This mapping is
achieved thanks to the level sets of a label. We first define the notion of level
sets and then we give the developments on level sets for functions of one and
two variables.

Let us introduce the level set [x]λ of a variable x ∈ L at a level λ ∈ L as
follows:

[x]λ =

{
0 if x ≤ λ,

1 if x > λ .

The level sets of a variable x satisfies an monotone property:

∀λ ≤ μ [x]λ ≥ [x]μ , (3)

The original gray-level value x can be reconstructed from its level sets using the
following equality as shown in [11,15]:

x = max{λ ∈ L, [x]λ = 0} . (4)

Conversely, it is shown in [15] and in [11] that any family of binary vari-
ables {[x]λ}λ=0...L−1 which satisfies the monotone properties, given by equa-
tion (3), define a label. In other words, knowing the label itself or its binary
representation in terms of level sets are equivalent.
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The next proposition gives a development for data fidelity term as a summa-
tion on the level sets of its variable. It is based on a ”discrete” integration of the
“discrete” variations of fp over its level sets.

Proposition 1. Any data fidelity term fp : L �→ IR rewrites on its level lets as
follows:

fp(x) =
L−2∑

i=0

Dp(i)[x]li + fp(l0) , (5)

where ∀i ∈ �0, L− 2� Dp(i) = fp(li+1)− fp(li) .

The proof is a straightforward extension of a similar proposition in [5].
Next, we extend the previous result to cope with functions of two variables. A

natural way to perform it consists of applying the previous development firstly
on the first variable and then on the second one. By rearranging terms it yields
the following level sets-based developments.

Proposition 2. Any prior term gpq : L2 �→ IR rewrites on its level sets as
follows:

gpq(x, y) =
L−2∑

i=0

L−2∑

j=0

Rpq(i, j)[x]li [y]lj (6)

+
L−2∑

i=0

(
D1

pq(i)[x]li + D2
pq(i)[y]li

)
+ C ,

where
∀i ∈ �0, L− 2� D1

pq(li) = g(li+1, l0)− g(li, l0) ,

and
∀i ∈ �0, L− 2� D2

pq(li) = g(l0, li+1)− g(l0, li) ,

and C = gpq(l0, l0) and more importantly where

∀(i, j) ∈ �0, L−2�2 Rpq(i, j) = g(li+1, lj+1)−g(li+1, lj)−g(li, lj+1)+g(li, lj) (7)

So far, we have made no assumptions on data fidelity terms and on priors. In
other words, results given in Proposition 1 and Proposition 2 hold for any func-
tion of one and two variables, respectively. In the next section, we specialize
these level sets developments in order to globally optimize MRFs with submod-
ular priors.

3 MRFs with Submodular Priors

In this Section, we assume that all priors {gst} are submodular functions and
we show that such MRFs can be exactly optimized via computing a maximum
flow on an associated graph [4,14,19]. Our approach consist of first applying the
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previous proposition to restate the original energy given by Eq. (1) in terms
of binary variables. So we rewrite all data fidelity and prior terms using the
expansions given by Proposition 1 and Proposition 2, respectively. So we get:

E(u|v) =
∑

(p,q)∈E

⎧
⎨

⎩

L−2∑

i=0

L−2∑

j=0

Rpq(i, j)[up]li [uq]lj +
L−2∑

i=0

D1
pq(i)[up]li + D2

pq(i)[uq]li

⎫
⎬

⎭

+
∑

p∈V

L−2∑

i=0

Dp(i)[up]li + K ,

where the constant K comes from the constant C in the previous propositions.
Note that the latter rewriting of the energy E(u|v) only involve the level sets of
the image u, i.e., {[u]li}i=0...L−1. So let us define a new energy Ẽ whose variables
are now |L| binary images {bi}i=0...L−1 as follows:

Ẽ({bi}i=0...L−1|v) =
∑

(p,q)∈E

⎧
⎨

⎩

L−2∑

i=0

L−2∑

j=0

Rpq(i, j)bi
pb

j
q +

L−2∑

i=0

D1
pq(i)b

i
p + D2

pq(i)b
i
q

⎫
⎬

⎭

+
∑

p∈V

L−2∑

i=0

Dp(i)bi
p + K .

Now if for all sites p ∈ V , the families of binary images {bi}i=0...L−1 satisfy the
monotone property given by Eq (3), then this family defines an image using the
reconstruction given by Eq (4). However if any of the families {[bi

s]λ}λ=0...lL−1

violates the monotone property, then a gray level image cannot be defined. Be-
sides note that for any image u we have E(u|v) = Ẽ({[u]λ}λ=0...lL−1 |v). Thus,
if we are able to minimize the energy E({[·]λ}λ=l0...lL−1 |v) while preserving the
monotone property, then we get a global minimizer of E(·|v). In order to force
the monotone property to hold we define the following new energy:

Ẽα({bi}i=0...L−1|v) = Ẽ({bi}i=0...L−1|v) +
∑

p∈V
α

L−2∑

i=0

H(bi+1
p − bi

p) , (8)

where H : IR �→ IR is the Heaviside function defined as H(x) = 0 if x ≤ 0 and
1 else. It is shown in [6] that if α is set to a sufficiently large finite value, then
we are assured that any global minimizer of Eα({·}i=0...L−1|v) never violates the
monotone property give by Eq. (3).

Now we show that the boolean energy (8) can be optimized via a maximum
flow or by duality a s-t minimum-cut [1]. Following the seminal work of [19] or
equivalently [4,14] it is enough to show that every pairwise interaction terms of
binary variables are submodular. Specializing the definition of submodularity,
Eq. (2) for a binary function f of two variables, i.e., f : {0, 1}2 → R, we get
that:

f(0, 0) + f(1, 1) ≤ f(0, 1) + f(1, 0) . (9)
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For the case we are considering we shall check the submodularity of the terms
H([up]li+1 − [up]li) and Rpq(i, j)bi

pb
j
q. It is easily seen that the terms H(bi+1

p − bi
p)

satisfy the submodular property; see also [6] for further details. Thus it remains
to show the submodularity of the terms Rpq(i, j)bi

pb
j
q. Using the inequality (9) it

means to show that �0, L − 2�2 R(i, j) ≤ 0 . This property is assured by the
submodularity assumption of the priors, Eq. (2), as shown in the next proposition.

Proposition 3. Assume g : L2 �→ IR. The following two assertions are
equivalent:

1. g is submodular,
2. g writes as

g(x, y) =
L−2∑

i=0

L−2∑

j=0

R(i, j)[x]li [y]lj (10)

+
L−2∑

i=0

(
D+(i)[x]li + D−(i)[y]lj

)
+ C ,

where ∀(i, j) ∈ �0, L− 2�2 R(i, j) ≤ 0 , D+ and D− are two functions and
C is a constant.

Proof. Case 1)⇒ 2) We apply Proposition 2 to g and we get the form given in 2).
It is straightforward to see that any unary function is submodular. The submodu-
larity condition given by Eq. (9) applied for the remaining terms R(i, j)[x]li [y]lj ,
reduces to show that ∀(i, j) ∈ �0, L− 2�2 R(i, j) ≤ 0.
Recall that Eq. (7) of Proposition 2 also states that

R(i, j) = g(li+1, lj+1)− g(li+1, lj)− g(li, lj+1) + g(li, lj) .

Now let us introduce the couples a = (li, lj+1) and b = (li+1, lj). Then it is
readily seen that R(i, j) rewrites as follows:

R(i, j) = g(a ∧ b)− g(a)− g(b) + g(a ∨ b) .

The latter is non-positive due to the submodularity of g. This concludes the
proof for the first case.

Case 2) ⇒ 1): Let x ∈ L2 and y =∈ L2. Note that the only interesting case
happens when x /∈ {(x ∨ y) ∪ (x ∧ y)} (otherwise the submodularity property is
obviously satisfied).

Let us denote by (xm, ym) = (x∧y) and (xM , yM ) = (x∨y). We need to show
that g((xm, ym)) + g((xM , yM ))− g((xm, yM ))− g((xM , ym)) ≤ 0 .

To prove this inequality we write each term in the level-set development form
given by Eq. (10). One sees that the constant C and the terms involving the single
summation

(∑L−2
i=0 ·

)
cancels each other. Thus only the double summation terms

remain, i.e., we need to show:
L−2∑

i=0

L−2∑

j=0

R(i, j)
(
[xm]li [ym]lj + [xM ]li [yM ]lj − [xM ]li [ym]lj − [xm]li [yM ]lj

) ≤ 0 ,
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which is equivalent to

L−2∑

i=0

L−2∑

j=0

R(i, j) ([xM ]li − ([xm]li)
(
[yM ]lj − ([ym]lj

) ≤ 0 . (11)

Since xM ≥ xm and yM ≥ ym get that

∀i ∈ L ([xM ]li ≥ ([xm]li) ∧ ([yM ]li ≥ ([ym]li) ,

and thus every term in the double summation in (11) are non-positive since
R(i, j) ≤ 0. This concludes the proof. �

So far we have shown that the binary energy 8 can be exactly optimized using a
maximum flow approach [4,10,14,19]. Minimizing the latter energy is equivalent
to minimize a first order MRF with submodular priors. Note that Proposition 3
gives a sufficient and necessary condition for applying the proposed approach.
This result highly generalizes the results presented in [6] and [13].

We now consider the case where the priors are a unary function of the differ-
ence of the labels. These are widely used in image analysis because it corresponds
to regularize the gradient of an image. The most well-known example of such a
prior is most probably the Total Variation [20]. Under the above assumption the
next proposition shows that only a convex regularization of the difference of the
labels can be considered using the approach presented in this paper.

Proposition 4. Assume g : L2 → IR is submodular and has the following
g(x, y) = g̃(x − y) then g̃ is a unary convex function.

Proof. First we apply Prop 2. Now, due to the form of g̃ we have that R(i, j) =
2g̃(i−j)− g̃(i−j+1)− g̃(i−j−1). We also have R(i, j) ≤ 0 by the submodularity
of g. By letting k = i−j we get that 2g̃(i−j) ≤ g̃(i−j+1)+ g̃(i−j−1) which is
exactly the discrete second variation convexity criteria for a unary function [16]
applied for g̃. �

Note that although computing a maximum can be performed in polynomial
time [1] our approach, like those of [6] and [13], is not. Indeed, an algorithm has a
polynomial time if it performs a polynomial number of operations with respect to
the number of bits required to describe the optimization problem. The necessary
number of bits to describe an integer n is �log2 n�. The graph we built has for
each pixel one node per gray level (i.e., for each pixel we have (L−1) nodes) and is
thus exponential with respect to �log2 n�. This exponential behavior prevents us
from applying this approach on very large images (such as 3D volumes) because
it requires to much memory. However, The proposed approach is manageable for
standard size images and we refer the reader to [6] and [7] for image restoration
and time results. Finally note that the maximum flow algorithm described in [3]
has been shown to be extremely efficient in practice though its time complexity
might not be polynomial. For image processing purposes it outperforms other
polynomial algorithms as reported in [3]. This makes the method applicable as
reported in [6] and [7].
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4 Conclusion

In this paper we have presented a method to globally optimize a Markovian
energy with pairwise interactions whose priors are submodular functions. The
approach consists of restating the original problem as binary optimization prob-
lem that can be efficiently solved using a graph approach. The binarization
makes use of the level set of the image. The submodularity of the priors has
been shown to be a necessary and sufficient condition for the applicability the
proposed approach.
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Abstract. We present an uncertainty model for geometric transformations, based
on polygonal uncertainty regions and transformation polytopes. The main contri-
bution of this paper is a systematic approach for the computation of regions of
interest for features by using the uncertainty model. The focus is on the solution
of transformation problems for geometric primitives, especially lines, so that re-
gions of interest can be computed for corresponding geometric features in distinct
images.

1 Introduction

Quantization, geometric distortion and noise in digital image acquisition invariably lead
to uncertainty about the occurrence, location and shape of image features. Coping with
feature uncertainty is one of the major challenges in those computer vision applications
that want to establish correspondences between features in distinct images, that want
to derive geometric relations between features, or that involve geometric reasoning.
A good mathematical model for feature uncertainty, however, can greatly improve the
performance of a correspondence or geometric reasoning algorithm. For example, small
and accurate regions of interest (ROIs) for each feature help to find correspondences
more quickly and reliably. Computing ROIs becomes therefore an essential part of real-
time image and video processing.

In this work, we examine the problem of computing ROIs from a mathematical view-
point. Our approach is based on the computation of uncertainty polytopes for the trans-
formations that map features in one image onto features in a second image. In this paper,
we give an overview of the uncertainty problems that must be solved to compute a ROI
for a certain geometric feature. We extend previous work and show how uncertainty
regions and ROIs can be determined for line features.

Several approaches have been used to model geometric uncertainty. Kanatani was
one of the first to use statistical inference in a systematic manner to solve uncertainty
problems in geometry [3, 4]. Förstner has worked out several simple-to-use tools that
are based on statistical inference, and which can be used to represent, analyze and prop-
agate uncertainty through geometric reasoning chains [1]. This work has been further
extended to other specific problems [6, 5].

The approach presented in this paper is not based on statistical inference, but on the
use of uncertainty regions. That is, instead of estimating a pdf for a feature, we construct

V.E. Brimkov, R.P. Barneva, H.A. Hauptman (Eds.): IWCIA 2008, LNCS 4958, pp. 238–249, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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an uncertainty region in which the feature is likely to occur. Roughly, an uncertainty
region is a region which indicates where a pdf is above a certain threshold. Furthermore,
instead of using uncertainty ellipses, we use uncertainty polytopes, which provide more
flexibility. Using uncertainty polytopes often results in simple computations, and gives
the possibility to proceed further in the geometric reasoning chain. Furthermore, in
many applications it is more important to have a reliable ROI for a feature, without the
exact knowledge of a pdf.

The uncertainty problems described in this work either lead to linear or nonlinear, i.e.
quadratic, cases. Although algorithms are known to exist for the solution of quadratic
programming problems, they are not useful for most image processing applications,
due to their complexity. On the other hand, there exist efficient geometric techniques
to solve linear programming problems [2]. In our approach, the focus is therefore on
simple methods for the solution of a system of linear equations or inequalities. We will
consider solving linear systems as a special case of linear programming, and we also
refer to it as such in the remainder of this work.

First, we give an overview of the transformation uncertainty problems in section 2.
Next, in section 3, we describe how to compute the ROIs for point features. We go into
greater detail for the line transformation problems in section 4, mainly for the cases that
can be solved using linear programming. In section 5, we present an application involving
the computation of ROIs for line features. Finally, we conclude the paper in section 6.

2 Overview of Transformation Uncertainty Problems

When considering geometric features and their transformations, uncertainty about their
exact position must be taken into account. The uncertainty is modeled as a convex un-
certainty region in which the primitive must be located. In this section, we will introduce
the mathematical notation used in later sections to discuss the transformation problems
in greater detail.

In this paper, geometric primitives are used as features, with a focus on points and
lines. We will assume from now on that the features, both points and lines, are in general
position. We shall not discuss special configurations.

The position or transformation parameters are given either by a single specific point,
or by an uncertainty region or polytope in the parameter space. S denotes specific pa-
rameters, while U indicates uncertainty regions or polytopes. A convex bounded poly-
gon of a certain size and shape models the uncertainty about the exact location of a
feature in the image, which is due to e.g. errors introduced by the digitization process,
noise or the feature detector.

In this work, the transformations are limited to affine transformations T , represented
as

T =

⎡

⎣
a b e
c d f
0 0 1

⎤

⎦ . (1)

Affine uncertainty transformations can then be represented as a polytope in 6 dimen-
sions, one for each parameter of the affine transformation T . By sufficiently constrain-
ing the parameters, a convex bounded polyhedron or polytope is obtained in the
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Table 1. The first column denotes the meaningful situations. The last two columns show whether
the problems can be solved for point features using linear programming or not.

Meaningful Linear Nonlinear
SSS SS?S, SSS?, S?SS
USU USU?, U?SU
SUU SUU?, SU?U
UUS U?US, UU?S
UUU U?UU , UU?U , UUU?

parameter space. Some constraints may be known beforehand, e.g. if the expected trans-
lation is maximum 100 pixels, then −100 ≤ e, f ≤ 100.

To denote the transformation problems, we use three letters XY Z to specify a map
from X to Z by the transformation Y , i.e. Y : X → Z . For example, SUU denotes
a transformation from a feature on a specific location, by a transformation uncertainty
polytope into an uncertainty polygon. Table 1 gives an overview of uncertainty prob-
lems for point features.

Furthermore, we use a question mark to define a problem in which a feature or region
is unknown and should be determined from the other data. For example, SUU? means
that a single feature and a transformation uncertainty polytope are given, and that the
uncertainty region into which the feature is mapped must be determined.

The cases SSU , USS, SUS are always meaningless. For example, it is impossible to
map a single point by a single transformation onto a uncertainty region, which excludes
SSU . Some problems may not have a solution in the general. For example, given two
arbitrary n-gons in the plane, only when these two polygons are carefully chosen the
problem US?U will have a solution. Likewise, we exclude S?UU and UUS?.

The situations SUU and UUS are dual to each other. The case SU?U leads to the
construction of uncertainty polytopes for transformations (in the case of SU?U ) or
uncertainty polygons for image features (in the case of SUU?), while for problems
that fall under UUS it is easier to derive such polytopes or polygons for inverse trans-
formations. The situation UUU is the most general, but invariably leads to nonlinear
programming problems, as we will illustrate for point features in the following section.

Only a limited number of problems can be solved as linear programming problems.
To determine ROIs for features in a second image, several of these problems must be
solved. Therefore, we will discuss these cases in greater detail in the following sections
for point and line features. We will not consider nonlinear problems into detail in this
paper, however, in some cases a simple example is given to illustrate the nonlinearity of
a problem.

The solution of the different linear problems requires the use of some properties for
affine transformations and affine combinations. From the following observations, we
can deduce some useful lemmas.

For two points p1 = (x1, y1) and p2 = (x2, y2), and the affine combination p =
α1p1 + α2p2, the affine transformation T of the form (1) yields

x = α1(ax1 + by1 + e) + α2(ax2 + by2 + e)
y = α1(cx1 + dy1 + f) + α2(cx2 + dy2 + f).
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Because α1 + α2 = 1, this can be rewritten as

x = a(α1x1 + α2x2) + b(α1y1 + α2y2) + e

y = c(α1x1 + α2x2) + d(α1y1 + α2y2) + f.

It follows that α1T (p1) + α2T (p2) = T (α1p1 + α2p2). As the convex combination is
an affine combination with non-negative coefficients (0 ≤ αi ≤ 1), the convex com-
bination of points is preserved by an affine transformation. This proves the following
lemma.

Lemma 1. An affine transformation of an affine combination of points is equal to the
affine combination of the transformed points, i.e. T (α1p1 + α2p2) = α1T (p1) +
α2T (p2), provided α1 + α2 = 1. Similarly, an affine transformation of a convex com-
bination of points (with 0 ≤ αi ≤ 1) is equal to the convex combination of the trans-
formed points.

Lemma 2. A linear combination of mappings of a point p is equal to the linear combi-
nation of transformations applied to the point p, i.e. (α1T1 + α2T2)(p) = α1T1(p) +
α2T2(p).

The proof is obtained along the same lines as for Lemma 1. Since Lemma 2 holds for
linear combinations, it also holds for affine and convex combinations.

2.1 Transformation Polytope Duality

Since the situation UUU is unmanageable as a linear problem, when introducing un-
certainty polytopes for affine transformations, a choice must be made. Both SUU and
UUS are possible situations, where the derived problems can be solved by linear pro-
gramming. Unfortunately, we cannot convert a transformation polytope that has been
found for SU?U into a polytope for the problem UU?S.

Suppose we have a transformation polytope of affine transformations, what is the
shape of the set of inverse transformations? It is not a polytope, and not even a convex
set, as shown by the following example.

The inverse of an affine transformation is also an affine transformation. When the
affine transformation T is represented as in (1) then the inverse transformation T−1 is
given by

T−1 =

⎡

⎣

d
−bc+ad

−b
−bc+ad

−de+bf
−bc+ad

−c
−bc+ad

a
−bc+ad

ce−af
−bc+ad

0 0 1

⎤

⎦ (2)

As an example, we choose a line segment of transformations as transformation poly-
tope. We visualize a projection of the calculated set of inverse transformations upon the
parameter plane ab in Fig. 1. The projection is convex as a function, but it is not con-
vex as a curve, which means that also the curve formed by the transformations is not
convex. Even if we restrict the transformations to scalings and translations, the set of
inverse transformations is not convex. Counterexamples can easily be found for those
cases. Only if we restrict the transformations to translations only, the inverse transfor-
mations form a polytope.
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a

b

Fig. 1. Example: On the left, we show a projection of the transformation uncertainty polytope
onto the ab parameter plane. The projection of the inverse transformation polytope upon the ab
parameter plane is shown on the right.

This means that we must either model uncertainty for problems of the form SUU or
for problems of the form UUS. The situation SUU is the most natural when consider-
ing ROIs, as we want to find out where a specific feature in the first image can be found
in a second image.

3 Regions of Interest for Point Features

Suppose we have a set of correspondences between two limited sets of features in two
distinct image frames. Assume that the features of one frame can be projected upon
the features of the second frame by a transformation map. The exact position of the
feature can not be resolved due to errors introduced by the digitization process or by
the feature detector. Since the feature position is not exactly known, the transformation
map can not be precisely determined. This transformation uncertainty can be described
by introducing an uncertainty polytope for the map, as we showed in previous work [7,8,
9,10,11]. With this uncertainty polytope, the ROIs for other features can be determined.
The properties of the uncertainty polytope determine the variation of the size and the
shape of the ROIs across the image.

The procedure for solving the ROI problem requires solving both the SU?U and
SUU? problem. First, we determine the uncertainty of the transformation map by solv-
ing SU?U . Then the ROIs can be computed by using the uncertainty of the map. In
turn, SU?U and SUU? involve SS?S and SSS? as subproblems. Therefore, we first
discuss how to solve these problems. Next, a brief overview of the other point transfor-
mation problems is given, based on previous work. In particular, we show that the ROI
problem has been solved for point features.

SSS?, S?SS and SS?S. Both SSS? and S?SS are trivial problems, which are solved
by simply applying the forward and inverse transformation as given by (1) and (2). Also
the problem SS?S is easy to solve for points. A closed formula for the transformation
mapping three points (x1, y1), . . . , (x3, y3) upon three points (x′

1, y
′
1), . . . , (x

′
3, y

′
3) can

easily be derived. Such a transformation exists provided the points are not collinear, i.e.
the points must be in general position.
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SU?U and SUU? A solution for SU?U and SUU? is required when computing ROIs
for the transformed features. Both problems have been solved in previous work [7, 8,
9, 10, 11]. To solve SU?U , we must find a transformation polytope mapping point sets
into uncertainty regions. It is easy to show that the polytope is the convex hull of the
transformations that map source points onto the vertices of the uncertainty polygons
in the image plane. Let p1, p2, p3 be three points in the source plane and let qi

1, qj
2, qk

3

be the vertices of the corresponding uncertainty polygons in the image plane. Let Tijk

be the transformation mapping the points p1, p2, p3 onto the points qi
1, qj

2, qk
3 . Then,

because of Lemma 2, the transformation uncertainty polytope is the convex hull of the
transformations Tijk.

Given a transformation polytope and a set of other feature points, we can determine
the ROIs as uncertainty polygons in the second image frame. This follows directly from
Lemma 2. When a source point p is projected onto the points ql in the image plane with
the vertices T v of the transformation polytope, the uncertainty polygons are obtained
as the convex hull of the points ql. We try to find a corresponding feature in the image
plane, in a search space limited to only the ROI described by the uncertainty polygon.

USU? When pi denotes the vertices of the uncertainty polygon in the source plane,
the uncertainty region in the image plane is the convex hull of the points T (pi). This
follows from Lemma 1. For the inverse problem U?SU , we simply apply the inverse
transformation to the vertices qi of the uncertainty polygon in the image plane. Then
the uncertainty region in the source plane is the convex hull of the points T−1(qi).

UU?U. Let U1, U2, U3 and U ′
1, U

′
2, U

′
3 be convex regions in respectively the source and

the image plane. Then the set of affine transformations that map at least one point of Ui

into U ′
i is not convex, as can be illustrated by a simple example. Fig. 2 shows the points

U2, U3, U
′
1, U

′
3 and the line segments U1 and U ′

2 as uncertainty polygons. The projection
of several affine transformations in the uncertainty polytope onto the ab parameter plane
is shown in Fig. 2. This figure clearly shows that the projected polytope is not convex,
which means that also the transformation uncertainty polytope is not convex.

Fig. 2. Example: On the left the uncertainty regions in the source (Ui) and image (U ′
i) plane are

shown. The uncertainty polytope for the transformation from the uncertainty regions Ui into the
uncertainty regions U ′

i can be computed. The right figure shows the projection of this transfor-
mation polytope on the ab parameter plane.
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4 Regions of Interest for Lines

Let px+qy+r = 0 be the equation of a line, then we represent this line by a parameter
point l = (p, q, r) in R

3. Any point of the form γ(p, q, r), with γ not zero, represents
the same line. An uncertainty region for line parameters is a cone C minus the origin,
where C contains rays of the form (γp, γq, γr). To define a convex polyhedral cone
C, it is sufficient to define a set D of rays γ(p, q, r) such that the minimal cone that
contains D and the origin is equal to C .

For a non-singular affine transformation T represented by (1), line parameters are
transformed by a linear transformation

⎡

⎣
p′

q′

r′

⎤

⎦ =

⎡

⎣
d −c 0
−b a 0

bf − de ce− af ad− bc

⎤

⎦

⎡

⎣
p
q
r

⎤

⎦ = R

⎡

⎣
p
q
r

⎤

⎦ (3)

where the matrix R is the transpose of the inverse of T , multiplied with the determinant
of T , or the transpose of the adjugate of T .

In principle, since line parameters are transformed by a simple linear transformation
R, one could introduce uncertainty polytopes for the entries rij of the matrix R. In
this way, we can proceed by solving problems that are similar to the problems listed in
Table 1. The drawback of this approach is that it becomes difficult to combine the ROIs
derived for points with the ROIs derived for lines. Therefore, we will try to derive ROIs
for lines from the uncertainty polytopes for the affine transformations T .

The transformed line parameters (p′, q′, r′) are given by

(dp− cq,−bp + aq, bfp− dep + ceq − afq + adr − bcr). (4)

For a given column vector v of line parameters, we shall denote the set of all nonzero
scalar multiples of the transformed line parameters (4) as T < v >. Let v1, v2 be the
parameter vectors of two lines. For any linear combination of line parameters we have
R(α1v1 + α2v2) = α1Rv1 + α2Rv2. This has an immediate consequence.

Lemma 3. Let T be an affine transformation. The transformation of a convex combi-
nation of line parameters (for which α1 + α2 = 1, and 0 ≤ α1, α2 ≤ 1) is equal to the
convex combination of the transformed line parameters. That is, T < α1v1 +α2v2 >=
α1T < v1 > +α2T < v2 >.

As a result, the cone that defines an uncertainty region for the line parameters is trans-
formed by T into a cone.

4.1 Line Transformations

To solve the region of interest problem for lines, we must solve both SU?U and SUU?,
where S is a set of lines, and U represents a set of uncertainty regions. S?SS, SS?S,
and SSS? are subproblems of SU?U and SUU? and thus also require a solution.

S?SS and SSS? Both S?SS and SSS? are easy to solve by applying either R or its
inverse.
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SS?S for n points and m lines with n + m = 3. When three lines and their trans-
formed images are given, this problem can easily be reduced to the problem where three
points and their images are given, provided the lines are in general position. It suffices
to find the affine transformation which maps the three intersection points of the three
lines on the image intersection points of the transformed lines.

A more interesting situation occurs when the affine transformation is specified by
n points (xi, yi) and m lines y = xpj + qj , with n + m = 3, and their images. At
first sight, (3) leads to nonlinear equations for the transformation parameters a, . . . , f .
However, a linear equation can be found by selecting two arbitrary points on the line,
writing down the transformed coordinates of the points, and substituting them into the
equation of the transformed line.

For example, the line y = xp1 + q1 contains the points (0, q1), and (−q1/p1, 0).
The images of these two points under T as in (1) are the points (bq1 + e, dq1 + f) and
(−aq1/p1 + e,−cq1/p1 + f). If we substitute the transformed points into the equation
of the transformed line, y′ = x′p′1 + q′1, we find

dq1 + f = (bq1 + e)p′1 + q′1, − cq1/p1 + f = (−aq1/p1 + e)p′1 + q′1 (5)

which are linear equations in the unknowns a, ..., f . Noteworthy in the above derivation
is that the exact location of the image points is not specified, only the requirement that
the image points must lie on the image line is used.

USU? and U?SU. Suppose we are given a convex polyhedral cone C of line parame-
ters. Then the parameters of the transformed lines also form a cone C′, due to Lemma
3. To find the cone C′ it is sufficient to transform the vertices of a polytope P that
generates C. Likewise, given C′ one can find C.

SU?U and SUU? To solve the ROI problem for lines we must solve both SU?U and
SUU?. The major problem is that an uncertainty polytope for the transformation pa-
rameters of T does not correspond to a polytope for the elements rij of the matrix R
as defined in (3). Thus a affine combination of affine transformations α1T1 + α2T2

does not correspond to an affine combination α1R1 + α2R2 of transformations which
transform line parameters into line parameters.

Fortunately, there are some important special cases in which the transformed line
parameters do form a polytope.

The line px + qy + r = 0 has parameter vector (p, q, r). This vector is transformed
into the vector (4). In general this is not a linear expression in the transformation param-
eters a, . . . , f unless some of the coefficients are either vanishing or fixed. We construct
the conflict graph for the transformation parameters in Fig. 3.

The maximal independent sets of this graph are: {a, b, e} and {c, d, f}. Other in-
dependent sets are: {e, f}, {d, f}, . . . Each independent set leads to a special case for
which the line parameter vector (4) becomes a linear function of the transformation
parameters a, . . . , f of the affine transformation T .

To illustrate the occurrence of linearity, we consider affine transformations of the
form

Tabe =

⎡

⎣
a b e
0 1 0
0 0 1

⎤

⎦ , Taaef =

⎡

⎣
a 0 e
0 a f
0 0 1

⎤

⎦ . (6)
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Fig. 3. Conflict graph

The transformation Tabe exploits the independent set {a, b, e}. The image of the line
vector (p, q, r) is

(p,−bp + aq,−ep + ar), (7)

which is linear in a, b, e. The transformation Tabe is an affine transformation where the
y coordinates are kept constant. In fact, in this case, for lines that are not horizontal
we can determine the image of each point of a line, since each points is displaced only
horizontally. Therefore, not much is gained by including the uncertainty of lines for
transformations of the form Tabe.

A more interesting case consists of transformations of the form Taaef , which involve
uniform scaling and translation. In this case the image of the line vector (p, q, r) is
(ap, aq,−aep − afq + a2r). Since, any multiple of a line vector represents the same
line, we can eliminate a, to obtain the image vector

(p, q,−ep− fq + ar), (8)

which is a linear function of a, e, f .

Lemma 4. Let T1, T2 be affine transformations that are either of the form Tabe or of the
form Taaef (both transformations must be of the same form). Let v be a column vector
of line parameters. Then the transformed line parameters of an affine combination of
transformations is equal to the affine combination of the transformed line parameters.
That is, (α1T1 + α2T2) < v >= α1(T1 < v >) + α2(T2 < v >), with α1 + α2 = 1.

Lemma 4 remains valid for convex combinations with α1, α2 ≥ 0. When Lemma 4
holds, we can solve both SU?U and SUU?. Suppose we are given a set of line vectors
vi, and a convex polyhedral uncertainty cone C′

i for the image of each line. Furthermore,
for each cone C′

i , let v′ij be a finite set of line parameters such that C′
i is the smallest

cone that contains the lines v′ij and the origin. To solve the problem SU?U , for each line
vi, we first solve the problem SS?S for all lines v′ij in the uncertainty cone C′

i . Each
pair (vi, v

′
ij) yields a transformation Tij . The convex hull of the transformations Tij is

an uncertainty polytope Pi. The uncertainty polytope for the transformations that map
each line into its own uncertainty cone is the intersection of the uncertainty polytopes
Pi.

Suppose we are given a uncertainty polytope P for the transformations T and a line
vector v. To solve the problem SUU?, we compute Ti < v > for each vertex Ti of the
polytope P . The uncertainty cone for the transformed image of the line v is the smallest
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cone that contains all the points Ti < v > and the origin. Note that when the affine
transformations are of the form Taaef , then all the lines in the cone have the same slope
as the line v.

5 Application Example

In previous work, the use of the cases SUU? and SU?U for point features was demon-
strated in practical image processing application as image registration [10] or the com-
parison of line drawings [8]. Confidence measures can be defined to develop a notice
about the likelihood of correspondences between points in two distinct images [11].

In this work, we illustrate the use of uncertain line transformations in image pro-
cessing. A first advantage is that line features are often more reliable and stable than
point features. Lines obtained by detecting edges can be significant features for objects
as e.g. buildings or roads. Second, lines can often be positioned more accurately, which
leads to less uncertainty and smaller ROIs. A first application of line transformations
was presented in [10], which involved only horizontal and vertical lines. In this paper,
we present a more general method to obtain ROIs for features in subsequent images.

First, an uncertainty transformation polytope must be computed. This can be done
by constraining the parameters of the transformation, based on the expected maximum
transformation of the objects in the image. We choose to explicitly compute the un-
certainty transformation by solving the problem SU?U . The solution requires the in-
formation of a limited number of lines. These can be extracted by e.g. looking for
remarkable and easy segmentable objects in the image. In the example presented in Fig.
4, we are looking for a transformation Taaef consisting of uniform scaling and trans-
lation (6). The information of three lines on the traffic sign in the left image is used to
constrain the transformation polytope. In this example, the transformed line parameter
r′ = −ep− fq + ar, as seen in (8), must satisfy τl ≤ r′ ≤ τu for each of the lines so
that the polytope is bounded in the parameter space aef . For this type of transforma-
tions, the polytope is computed by solving a system of linear inequalities, as explained
in section 4.

Fig. 4. Example: the left image shows the lines that are being mapped to the uncertainty regions
indicated in the right image



248 K. Teelen and P. Veelaert

Fig. 5. Example: the left image shows the lines that are being mapped to the uncertainty regions
indicated in the right image

Once the uncertainty transformation polytope has been computed, it is used to com-
pute ROIs in the second image. These regions limit the image space in which to look
for the features, corresponding to those in the first image. As explained for the case
SUU? in the previous section, the vertices of the polytope can be used as transforma-
tion parameters to map other lines in the first image to ROIs in the second image. In
Fig. 5, we indicated some of the lines for which a correspondence must be found in
the left image. When the parameters of these lines are mapped with the vertices of the
transformation polytope, we obtain the lines indicated in the right image. Multiple lines
are shown, one for each vertex of the transformation polytope. The uncertainty region
for each line in the first image is then the convex hull of these mapped lines, i.e. the
region between the two outermost lines. This example shows that the ROI for a line is
considerably reduced, as line features must only be searched for in the corresponding
uncertainty region. Also note that the shape and size of the ROIs will vary across the
image, as can be seen for the two lines shown in the example.

6 Concluding Remarks

In this paper, we discuss an uncertainty model for geometric transformations, based on
polygonal uncertainty regions and transformation polytopes. The uncertainty model can
be used to solve different transformation problems, leading to either linear or nonlin-
ear programming problems. We focus on the problems which can be solved by linear
programming.

In previous work, we showed that the concept of uncertainty regions and transforma-
tions is indeed useful in several image processing algorithms concerning point features.
That work is now extended to transformation problems for line features. Although we
cannot represent the uncertainty of an affine transformation by a convex polytope in the
general case, there exist some meaningful and important cases in which the transforma-
tion problems for line parameters can be solved using linear programming techniques.
The uncertainty regions obtained as a solution for the uncertainty transformation prob-
lems, indeed prove to be useful as regions of interest in the detection of line features in
distinct images.
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Abstract. Linear boundary detection and corner detection are major
challenges in computer vision. There exist many solutions for these prob-
lems based either on edge detection or interpolation methods but they
are inexact in the sense that they do not talk of bounds. The basic
objective of the study in this paper is to find out how exactly we can
locate or restore linear boundaries or corners in the real plane, rather
than pixel domain, by observation at discrete pixels. This paper devises
new algorithms for linear boundary detection and corner detection using
computational and digital geometric techniques.

1 Introduction

Edges in an image are the set of pixels where the image intensity level undergoes
a sharp variation. The edge detectors mostly produce for a pixel, a quantitative
value proportional to the chances of that pixel to be an edge pixel and an orien-
tation. Then, a threshold is applied to determine whether a pixel is an edge pixel.
The quantitative values and orientations are obtained using some convolution
operators, based on derivatives of the image. The edge linking process is usually
done by some variants of Hough transform [6]. Note that, for the edge detectors
no apriori information is known whereas for the linking process some apriori in-
formation as to the nature of the curve of the object is known. In most practical
industrial applications, one may assume that the objects to be recognized are
known apriori. This gives rise to model based object recognition [4]. Minimizing
errors by interpolation techniques and best-fit criteria to an apriori model is
the guiding principle behind these recognition techniques. Bern and Goldberg
[3] describe one such method where with an apriori knowledge of a rectangular
paper they find out the continuous parameters of a best-fit rectangle from dis-
crete observations of certain types of sensors. There are a host of other methods
on interpolation techniques and corner detection. Due to shortage of space, we
leave out their review here.

The problem we are concerned with in this paper relates to linear boundary
detection and corner detection in an image taken by a Charge Coupled Device
(CCD) camera.
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1.1 CCD Camera and Image Formation

A CCD camera [1] contains an array of square sensors which emit photo-electrons
proportional to the amount of light captured by the sensors. The voltages de-
veloped due to emission of photo-electrons from the sensors gets transformed
to different levels of intensity in the corresponding pixels of the image. The im-
age formation is performed by projecting the tessellation induced by the grid of
sensors (equivalently, pixels) onto the object. To simplify the image formation
model, we make the following assumptions:

- The tessellation is assumed to have all the squares of equal size.
- Each square in the tessellation imposed on the object plane has a one-to-one

correspondence to a sensor pixel i.e., the sensor pixel captures light reflected
from the corresponding square in the tessellation only.

- There is no loss of light photons in the way from the object to the sensors.

The left part ofFig. 1 shows an object that is a paperwhose one side is completely
black and the other side is completely white demarcated by a straight line. On the
right, is the tessellation induced by the grid sensor pixels on the object. Under the
above assumptions, the following observations can be made about the intensity
value at any pixel (i, j). Assume that the demarcating line has a slope of tan θ and
each square grid has a length of a units. For a square grid (pixel) lying in the white
region, the intensity is maximum i.e., a2 ∗ 1 = a2 assuming intensity value of 1 per
unit area for the white portion. For a square lying in the black region the intensity is
minimum, i.e., a2∗0 = 0 assuming intensity of 0 for each square. For a squarewhich
is intersected by the line, two possible cases are shown in Fig. 2, and the intensity
is proportional to the white area.
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Fig. 1. Left: Paper with one part white and other part black; Right: Grid of sensor
pixels

r

(a/2 - r) tan θ

a

θ θ

r

Fig. 2. Two different cases of a line intersecting a sensor
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Hence, the intensity at a sensor pixel at position (i,j) is given by the following
equation.

Si,j =

{
a2 − 1

2 (a
2 − r)2 tan θ if (a

2 − r) tan θ < a
1
2a2(1 + cot θ) + ar otherwise .

(1)

This is the basic model of image formation that we assume throughout the paper.

1.2 Our Contribution

The basic objective of the study in this paper is to find out how exactly we
can locate or restore linear boundaries or corners in R

2 (in the 2D real plane)
described by continuous parameters by using observation at discrete pixels. In
the first problem dealt in Section 2, we have a rectangular sheet of paper that is
partitioned into black and white regions by a straight line on the sheet. With the
knowledge that the pixel intensities are formed as mentioned in Section 1.1, we
find out the parameters of the equation of the demarcating line. This problem,
though very simple, shows the motivation behind our work in this paper. In
the second problem in Section 3, we consider the same object but now consider
quantization error. So, the pixel intensity values will not be exact. In this case,
we can at best hope for a bound on the parameters of the line. In Section 4,
we assume the same model of image formation without quantization error but
now the input object has a black side and a white side demarcated by two lines
meeting at a corner. In this problem, the goal is to locate the real coordinates
of the corner from the intensity values.

2 Linear Boundary Detection without Quantization Error

Problem 1. Given a grid of squares each having edge length a with the inten-
sity values at pixels formed as stated in Section 1.1, find the equation of the
demarcating line by using as less number of sensors as possible.

Consider two adjacent sensors (shown in Fig. 3) through both of which the
unknown line passes. As the line spans through the entire image, such a pair of
sensors can be found by scanning an entire row for two neighboring pixels which
has intensity value in (0, a2).

The value of intensity at these squares (proportional to the white area as
shown in Fig. 3) in terms of the unknown θ and r are as follows.

Si,j = a2 − 1
2
(
a

2
+ r)2 cot θ and Si+1,j =

1
2
(
a

2
− r)2 cot θ

These two intensity values are known and by solving the above two equations
we get r and θ. Let the line joining the two centres of neighboring sensors (i, j)
and (i + 1, j) cut the demarcating line at P which is at a distance of d from the
centre of sensor (i, j). The distance d (as shown in Fig. 3) is d = a

2 −r cot θ. This
gives the co-ordinates of the point P as shown in Fig. 3. Using the coordinates
of P and θ, the equation of line can be found out exactly.

Result 1. The number of sensors required to find the demarcating line is two.
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θ

d P

demarcating line

sensor boundary

Si, j Si+1, j

Q1

li

li+1

ui+1

ui

Q2

Fig. 3. Boundary sensor pixels. d denotes the distance of the centre of the square grid
from P , the point where the demarcating line cuts the line joining the two neighboring
centres.

3 Linear Boundary Detection with Quantization Error

Because of quantization, a range of intensity values are mapped to a single value.
Owing to this, any point P as found out in Section 2, does not remain unique,
but becomes an interval through which the demarcating line passes.

If the number of bits used for digital value is n and the maximum analog
voltage is V , then each discrete digital value can be mapped to a range of real
values and that range is V/(2n − 1). Thus each of the intensity values Si,j is a
range

[V/(2n − 1)] ∗ k ≤ Si,j ≤ [V/(2n − 1)] ∗ (k + 1) where 0 ≤ k ≤ 2n − 1

Writing d, as defined in the previous section, in terms of Si,j and Si+1,j we get,

d = [(Si,j + Si+1,j)/a]− (a/2) (2)

Hence, d and thus P lie in a range of 2V/(2n − 1)a.

3.1 Lower and Upper Bound on Slope of Line

In a way as mentioned above, we can find intervals around two points Q1 and Q2

(as shown in Fig. 3) where the line cuts the boundaries of the sensors. If two such
points Q1 and Q2 are considered, a candidate line cannot be determined exactly
but will pass through the intervals around Q1 ([li, ui]) and Q2 ([li+1, ui+1]) (as
shown in Fig. 3). The candidate lines that can pass through such intervals will
stab the shaded region shown in Fig. 4. If we consider an image with N rows,
Q1 and Q2 can come from any of the

(
N
2

)
rows; and each of them gives rise to a

region like the one shown in Fig. 4. The line to be detected has to stab all such
regions.
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Fig. 4. Left: Left and right hull. Right: Shaded area shows the region pertaining to the
candidate lines.

Problem 2. Given a set of ranges for each sensor (pixel) row through which the
demarcating line passes, determine the upper and lower bounds on the parame-
ters of the demarcating line.

Let [li, ui] define an interval through which the demarcating line passes. We
define two types of convex chains - Left Hull(LH) and Right Hull(RH).
LH(RH) is the lower(upper) part of the convex hull of the points li(ri) where
1 ≤ i ≤ N and N is the total number of ranges (same as the number of rows).
A region R enclosed by LH and RH can be defined as shown in the left part of
Fig. 4.

Lemma 1. Any line passing through the ranges [li, ui] must stab through R.

Proof. The proof is easy and is omitted. See left part of Fig. 5. ��

l u00

u

l N

N

L

i i )(x , y

l N

uN

l0 u0

CPmin

CPmax

Fig. 5. Left: A line which does not stab the area enclosed by left and right hull Right:
Critical points
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3.2 Algorithm

In a convex hull, the subsequent line segments in the upper or lower chain have
either monotonically increasing or monotonically decreasing slopes. We use this
property to find the bound. The line segments in LH and RH can be used
to formulate an incremental algorithm. The maximum possible slope (Lmax) of
any line passing through R is the slope of the line connecting l0 and uN while
the minimum possible slope (Lmin) is the slope of the line connecting lN and
u0. To find the upper bound on the slope, scanning starts at the line segment
having maximum slope and subsequent line segments are scanned iteratively
till a line segment with slope less than Lmax is found. This slope is an upper
bound. Similarly lower bound can be found by iteratively scanning monotonically
increasing slopes untill a line segment with slope greater than Lmax is found. But
this bound is quite loose and can be further tightened by considering constant
c(intercept) also. We introduce the concept of critical point here. Two types of
critical points on each of the hulls are defined - CPmax and CPmin. CPmax is
a tangential point of contact between RH(LH) and the line with slope Lmax.
Similarly, CPmin is a tangential point of cantact point between RH(LH) and
the line with slope Lmin. We describe how CPmax and CPmin can be used to
find the upper and lower bounds on the slopes.

While finding a tighter upper bound, we use the loose bound on the slope
i.e. m found earlier. To check whether a line y = mx + c is a candidate line,
we just need to check whether a line with slope m and passing through CPmax

passes through the range (l0, u0) and the range (lN , uN). If this line does not
pass through these ranges, then there exists no c corresponding to that value of
m and the next slope in the convex hull is considered. Proceeding this way, a
value of m can be found for which a legitimate c value exists, and that is the
upper bound on the slope. Similarly using point CPmin, the lower bound on
slope can be found.

The construction of the convex hull chains takes O(N log N) time [2]. The
time complexity of the iterative algorithm described above is O(N). To find out
the intervals [li, ui] for each row, the row is to be scanned once taking O(N)
time. Under the assumption that there are N columns, the total time taken is
O(N2). Hence, the complete process takes O(N2) time.

3.3 Proof of Correctness

To prove the correctness of the algorithm, first the choice and use of CPmax

and CPmin is justified. We prove that there exists no point p′ (p′′) other than
CPmax (CPmin) on RH(LH) so that if a candidate line l passes through CPmax

(CPmin) and another candidate line l′ (l′′) passes through p′ (p′′), then slope
of l′ (l′′) is greater (smaller) than slope of l. The proof for the case of CPmax

is given. The other can be proved similarly. Let us consider two points on the
right hull - one point is CPmax and other(called p′) is second farthest point from
Lmax. Since p′ is second farthest point after CPmax, it is easy to see that there
is no need to prove it for any other point on the hull. Now considering CPmax

and p′ there can be two cases as shown below in Fig. 6.
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p′

l0
u0

uN
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u0

uN

p′

lN

CPmax

lN
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Fig. 6. Two different alignments of points CPmax and p′

Case 1: Point p′ lies to the right of point CPmax. Considering the definition of
CPmax, it is easy to see that of all the lines which pass through p′ and are also
candidate lines(i.e. stab through the regionR), the line with maximum slope will
also have to pass through CPmax. If this is not so, it either violates the definition
of CPmax or does not stab the region R. Thus, there is a candidate line passing
through CPmax which has atleast as great slope as any candidate line passing
through p′. There can be other candidate lines passing through CPmax which
have greater slope.

Case 2: Point p′ lies to the left of point CPmax. As can be seen easily from
the figure, any candidate line passing through p′ must pass through CPmax,
otherwise it will not stab through R. But considering the definition of CPmax,
such a line will have a slope greater than Lmax and hence it can be concluded
that no candidate line passes through such a point p′.

From these two cases, it is clear that there exists no point p′ other than
CPmax on the right hull so that if a candidate line l passes through CPmax and
another candidate line l′ passes through p′ then slope of l′ is greater than slope
of l.

From the above proof, we can assert that if we want to find whether there
exists a c corresponding to a particular m so that a line y = mx+c is a candidate
line or not, then we only need to find whether a line with slope m and passing
through CPmax (or CPmin) passes through ranges (l0, u0) and (lN , uN). From
the above discussions, we have the following result.

Result 2. The upper and lower bounds on the parameters m and c of the de-
marcating line y = mx + c can be found in O(N2) time for an N ×N image by
determining the interval [li, ui] for each sensor row through which the demarcat-
ing line passes. This interval can be found from the knowledge of the quantization
mechanism. ��
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4 Corner Detection without Quantization Error

A corner is defined as the intersection of two edges. We propose a method based
on manhattan chain and digital straight lines [7].

Problem 3. Given a grid of squares each having edge length a with the intensity
values at pixels formed as stated in Section 1.1, find the equation of the two
demarcating lines (separating a black and white side) that form a corner.

4.1 Manhattan Chain and Digital Straight Lines

A manhattan chain consists of horizontal and vertical grid edges as shown in
Fig. 7. We can have a manhattan chain forming the envelope of a line l as shown
in Fig. 7. Using Freeman chain coding [5], a manhattan chain is a string over
the alphabets in {0, 1, . . . , 7}; the alphabets implying 8 directions. A manhat-
tan chain corresponding to a digital straight line(DSL) has some properties as
discussed next. For a detailed discussion on this, refer [7].

l

Fig. 7. A manhattan chain(shown in bold) forming an envelope of the two demarcating
lines that form a chain denoted as l

A chain code sequence c is a chain code for a DSL if the following conditions
are satisfied. The code ci is the ith reduced form of c.

(A1) There are at most two different letters a and b in cn, and if there are two,
then ‖a− b‖ = 1 (counting modulo 8 in the case of c0) where n ≥ 0.

(A2) If there are two different letters in cn, then at least one of them is singular
in cn.

This definition derives a digital straight segment(DSS) property that allows the
formulation of a necessary and sufficient condition for such chain code sequences.
Let l(s)and r(s) denote the run lengths of non-singular letters to the left of the
first singular letter, or to the right of the last singular letter, respectively, for a
finite word s.

Definition 1. A finite chain code sequence c satisfies the DSS property iff c0 = c
satisfies conditions (A1) and (A2), and any nonempty sequence cn = R(cn−1),
for n ≥ 1, satisfies (A1) and (A2) and the following two conditions:
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(B1) If cn contains only one letter a, or two different letters a and a + 1, then
l(cn−1) ≤ a + 1 and r(cn − 1) ≤ a + 1.

(B2) If cn contains two different letters a and a + 1, and a is non-singular in
cn, then if l(cn−1) = a + 1 then cn starts with a, and if r(cn − 1) = a + 1
then cn ends with a.

An online DSS recognition algorithm reads the successive chain codes c0, c1, . . .
and determines the maximum k ≥ 0 such that c0, c1, . . ., ck is a DSS but c0,
c1, . . ., ck, ck+1 is not. For a review of a host of such algorithms, most of which
take linear time, see [7].

4.2 Exact Location of Corner

Based on the image formation model, we will have a manhattan chain that
demarcates the region between pixels having intensity in (0, a2). We analyze
this chain for its digital straightness properties to compute the corner. Consider
two lines l1 and l2 forming a corner point p in Fig. 8.

P

x1x0

T0

T1

y = y0

l1

l2

xu

Cl

C0

Cu

xl

Fig. 8. Left: Corner P with the range [Cl, Cu]. Right: Triangles T0 and T1 for the corner
are shown.

Let l1 be y = α1x + β1 and l2 be y = α2x + β2. Then it can be clearly seen
for this case that for x ∈ [xl, xu], ‖α1x + β1 − α2x − β‖ < 1. In other words,
both the lines lie in the same cell (in this section sensor pixels are called as cells)
for certain range [xl, xu] of x. Now, if the algorithm working on DSS property is
used to identify the maximal length of straight line l1, then it will identify the
cell Cu as the cell at which the straightness of line l1 is lost. Similarly, it will
return the cell Cl as the cell at which the straightness of line l2 is lost. But none
of these might be the cell in which the corner lies.
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4.2.1 Finding a Range for Corner Detection
Lemma 2. The corner lies between a cell Cl on the lower(left) side and a cell
Cu on the upper(right) side.

Proof. The on-line DSS recognition algorithm [7] reads the manhattan chain
code one code at a time and decides whether the code read uptil now corresponds
to a DSS. Since the method is incremental, it is obvious that the corner lies in a
cell to the left (assuming that the code is read from left to right) of Cu. Similarly,
if the same algorithm is run on the chain code or the line l2, the corner lies to
the right of Cl. Thus, the corner lies in the range of cells Cl and Cu. ��
Cl and Cu obtained from Lemma 2 can be used for detecting a range for the
corner.

4.2.2 Finding the Exact Cell
Consider the situation depicted in Fig. 8. Each of the cell is a square of side
length a. Consider the triangle T0 formed by the intersection of l1, y = y0 and
x = x0. Let the x-intercept made by l with y = y0 with respect to x = x0 is α.
Then, the intensity value for the triangle T0 is equal to the area of the triangle
which is

S0 =
1
2
αβ0 =⇒ β0 =

2S0

α
(3)

Similarly, for triangle T1 formed by intersection of l1, y = y0 and x = x1, its
intensity value can be written as

S1 =
1
2
(α + a)β1 =⇒ β1 =

2S1

α + a
(4)

If l1 does not contain a corner between x = x−1 and x = x1, then triangles T1

and T2 are similar triangles. Using the basic property of similar triangles,

α

β0
=

α + a

β1
(5)

Using equations 3, 4 and 5 we get

α =
a

√
S1
S0
− 1

(6)

Now consider a triangle Tn formed by l1, y = y0 and x = xn. Using the same
logic as above

βn =
2Sn

α + na

Using similarity between triangles Tn and T0, we get the value of α as

α =
na

√
Sn

S0
− 1

(7)
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If l1 is a straight line between x = x0 and x = xn, then the two values of
α in equations 6 and 7 will be same. Hence, this becomes a test for straight-
ness of line. This test used incrementally, by checking for all possible triangles
T0, T1, . . . , Tn, . . . , will lead to find the exact cell which contains the corner.
The straightness is tested using each triangle formed by xi incrementally where
i = 0, 1, . . . , n, . . . . Let xi be the value for which this test fails. Then the corner
lies in the cell lying between x = xi−1 and x = xi through which line l1 passes.
We need to ensure that the initial value of α found by using triangles T0 and
T1 must be correct i.e. the corner must not lie to the left of x = x1. So, given a
range [Cl, Cu], which is the candidate range for existence of a corner, the process
of finding α must start from two cells to the left of Cl (or two cells to the right
of Cu).

We also need to consider the increment of triangles along the Y-axis and this
time α will be the intercept along the Y-axis.

Lemma 3. Using increment of triangles along both X-axis and Y-axis results
in a unique cell which contains the corner.

Proof. Let line l1 pass through more than one cell for the same pair of X-axis
points (xi, xi+1). Obviously these cells are vertically on top of each other. Let the
Y-axis points for the ceiling of these cells be yp, yp+1, yp+2, . . . , yp+r. When the
triangle increment method described earlier is applied along X-axis, it indicates
that one of these vertical cells contains the corner. But, to pinpoint the exact
cell, we need to apply this triangle increment method along Y-axis also. At each
step, the similar triangle condition is checked. Let the cell whose ceiling is yp+q

contains the corner(call it Cq). Then, since the x co-ordinates of these cells does
not change, all the cells below Cq will satisfy the similar triangle property but
the cell Cq will not. And Cq can be correctly diagnosed as the cell containing
the corner. ��
This idea of using incremental construction along both the axes is used in the
algorithm to find exact cell containing the corner. The algorithm to find the
exact cell, given the range [Cl, Cu] as input, is shown below.

Algorithm

1. Move to two cells left(or right) of Cl. Let x = x0 be the ceiling(floor) X-axis
of that cell. Let y = y0 be the floor(ceiling) Y-axis of that cell.

2. Let α be the the x-intercept made by the demarcating line l1(l2) with y = y0

with respect to x = x0. Calculate the value of α using equation 6. Set i = 2.
3. Calculate the new value of α using equation 7 and incrementing i by 1. If

this value is same as in step 2, then continue with step 3 else goto 4.
4. If number of cells which lie between xi−1 and xi and though which l1 passes

is more than one then goto 5 else return with the unique cell.
5. Let γ be the intercept made by the damarcating line with x = x−1 with

respect to y = y0. Repeat steps 3 and 4 for the similar case of γ. Return
with unique cell.



Linear Boundary and Corner Detection 261

time after the manhattan chain has been found since both the on-line DSS
recognition and increment of triangles can be found in linear time.

4.2.3 Finding the Exact Location
If there is no quantization error, it is possible to find the exact location of the
corner in the real plane. Once the cell containing the corner is located, it can be
used to efficiently determine the slope of the line l1 as described in Section 2.
Similarly, the slope of line l2 can be efficiently determined. Once these two lines
are determined, their intersection point(i.e. the corner) is easily determined.

Result 3. The exact location of a corner can be found by analyzing a manhattan
chain for DSS properties. After that, the minimum number of cells required is four
more than the number of cells in the range returned by the DSS algorithm. ��

5 Conclusion and Discussions

This paper presented ways to use discrete information like intensity values at
sensor pixels based on camera models to find out bounds on the continuous
parameters of the linear boundary or corner. Algorithms for linear boundary
detection both in the absence and presence of quantization error have been
proposed. Methods for corner detection in the absence of quantization error has
also been proposed. Studies on corner detection in the presence of quantization
error is in progress.
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Abstract. In this paper, we prove the convergence property of the Horn-
Schunck optical-flow computation scheme. Horn and Schunck derived a
Jacobi-method-based scheme for the computation of optical-flow vectors
of each point of an image from a pair of successive digitised images. The
basic idea of the Horn-Schunck scheme is to separate the numerical op-
eration into two steps: the computation of the average flow vector in the
neighborhood of each point and the refinement of the optical flow vector
by the residual of the average flow vectors in the neighborhood. Mitiche
and Mansouri proved the convergence property of the Gauss-Seidel- and
Jacobi-method-based schemes for the Horn-Schunck-type minimization
using algebraic properties of the matrix expression of the scheme and
some mathematical assumptions on the system matrix of the problem. In
this paper, we derive an alternative proof for the original Horn-Schunck
scheme. To prove the convergence property, we develop a method of
expressing shift-invariant local operations for digital planar images in
the matrix forms. These matrix expressions introduce the norm of the
neighborhood operations. The norms of the neighborhood operations al-
low us to prove the convergence properties of iterative image processing
procedures.

1 Introduction

In this paper, we prove the convergence property for the Horn-Schunck optical-
flow computation scheme. First, we derive a proof for the original Horn-Schunck
scheme. Second, we evaluate the convergence rate. Finally, we introduce a method
of selecting the regularization parameter for accurate computation.

The main idea of the Horn-Schunck method for optical-flow computation is the
decomposition of the Laplacian to the neighborhood average and the subtraction
of the value at each point from the neighborhood average. Then, they derived the
Jacobi method for optical-flow computation. Therefore, in this paper, we clarify
the mathematical properties and evaluate the operator norm of the neighborhood
operations in digital image processing.

In signal processing and analysis, it is well known that a shift-invariant linear
operation is expressed as a convolution kernel. Furthermore, a linear transform
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in a finite dimensional space is expressed as a matrix [2,17,6]. It is also pos-
sible to express a shift-invariant operation as a band-diagonal matrix [3,2,16].
However, this expression is not usually used in signal processing and analysis.
In numerical computation of the partial differential equations, approximations
of the partial differentiations in discrete operations are one of the central issues
[4,7,17]. The discrete approximations of the partial differentiations are called the
neighborhood operations in digital signal and image processing. To analyze and
express digital image transformations from the viewpoint of functional analysis,
we introduce a method of describing the neighborhood operations in the matrix
forms.

Optical flow is an established method of motion analysis in computer vi-
sion [8,11,1] and has been introduced to many application areas such as cardiac
motion analysis [14,18], robotics [12,15,5], and visualization in chemical sciences
[13]. However, there still exist mathematical problems concerning to accurate and
stable computation of optical-flow. There are two types of evaluation methods
on the schemes for optical-flow computation. The first one is a numerical-based
analysis of the accuracy of the solution using normalized phantoms, that is, an
evaluation of the differences between the numerical results and the ground truth
for the synthetic data images with a predesigned motion field. The second one is
a mathematical-theory-based evaluation, that is, clarification of the convergence
and stability of the algorithm employing numerical analysis. From the viewpoint
of mathematical-theory-based evaluation, we derive the convergence property on
a variational optical-flow computation method proposed by Horn and Schunck
[8].

Horn and Schunck derived the Jacobi-based-method for the computation of
the optical-flow vector of each point [8] as the motion of each point on the image1.
The basic idea of the Horn-Schunck scheme is to separate the numerical operation
into two steps: the computation of the average flow vector in the neighborhood
of each point and the refinement of the optical flow vector at each point by
the residual of the average flow vectors in the neighborhood. In their paper [8],
the mathematical proof for the convergence property of the algorithm was not
dealt with. The convergence of the scheme was later examined numerically [1].
Therefore, it might be understood that the convergence of the scheme depends on
the input images. The first numerical scheme for computing optical-flow is later

1 In their original paper[8], they said

We now have a pair of equations for each point in the image. It would be
very costly to solve these equations simultaneously by one of the standard
methods, such as Gauss-Jordan elimination [11, 13]. The corresponding matrix
is sparse and very large since the number of rows and columns equals twice
the number of picture cells in the image. Iterative methods, such as the Gauss-
Seidel method [11, 13], suggest themselves.

However, the method has the same structure as the iteration form f
(n+1)
i = 1

2
(fn

i+1+
fn

i−1) − gi for solving the equation gi = 1
2
(fi+1 − 2fi + fi−1), which is derived as the

numerical approximation of g = d2

d2x
f .
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extended to the three-dimensional problem for the computation of cardiac optical
flow. Mitiche and Mansouri [10] proved the convergence property of the Gauss-
Seidel-method-based scheme for the Horn-Schunck-type minimization using the
algebraic property that the large system matrix of the problem is symmetry.
Furthermore, they proved the convergence property for the Jacobi-type scheme
of the Horn-Schunck-type minimization. In this paper, we derive an alternative
proof for the original Horn-Schunck scheme and evaluate the convergence rate.
Furthermore, we introduce a method of selecting the regularization parameter
which guarantees accurate computation.

2 Optical Flow Computation

2.1 Optical Flow and Regularization

For functions in two-dimensional Euclidean space R2, setting f(x−u, t+1) and
f(x, t) to be the images at times t + 1 and t, the small displacement u of each
point x is called the optical flow of the image f . For a spatio-temporal image
f(x, t), x = (x, y)�, the total derivative is given as

d

dt
f = ∇f�u +

∂f

∂t

dt

dt
, (1)

where u = ẋ is the motion of each point x. Optical flow constraint [8,11,1]
d
dtf = 0 implies that the motion u of the point x is the solution of the singular
equation, ∇f�u + ft = 0.

To solve this equation, the regularization method is employed to minimize the
criterion

J(u) =
∫

R2

{
(∇f�u + ft)2dx + αtr∇u∇u�} dx, (2)

where u is the vector gradient of vector u, which is given as ∇u = (∇u,∇v) for
u = (u, v)�. We call, in this paper, optical-flow computation by the minimization
of eq. (2) the Horn-Schunck method. Furthermore, the numerical algorithm to
solve eq. (2) is called the Horn-Schunck scheme for optical flow computation.

The Euler-Lagrange equation of the energy function of eq. (2) is

Δu =
1
α

(∇f�u + ft)∇f =
1
α

(Su + ft∇f), (3)

where S = ∇f∇f� is called the structure tensor of f at point x. We adopt
the natural boundary condition ∂

∂nf = 0, where n is the unit outward normal
vector on the boundary of the domain.

2.2 The Horn-Schunck Scheme

We assume that the sampled image f(i, j) exists in the M ×M grid region, that
is, we express fij as the value of f(i, j) at the point (i, j)� ∈ Z2. The natural
boundary condition, that is, the Neumann condition, for discrete flow vectors

uij = (u(i, j), v(i, j))� = (uij , vij)�, i, j = 1, 2, · · · , M (4)
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is
u1 1 − u2 2 = 0, u1 j − u2 j = 0, u1 M − u2 M−1 = 0,
ui 1 − ui 2 = 0, uM j − uM−1 j = 0,

uM 1 − uM−1 2 = 0, uM j − uM−1 j = 0 uM M − uM−1 M−1 = 0.
(5)

The discrete version of eq. (3) becomes,

Luij =
1
α

(Sijuij + sij), Sij = ∇fij∇f�
ij . sij = (∂tf)ij∇fij , (6)

where fij = f(i, j, t) is the sampled function of f(x, y, t) at time t.
Setting N4(fij) to be the operation to compute

N4(fij) = av4fij =
1
4

(fi+1 j + fi−1 j + fi j+1 + fi j−1) , (7)

the Laplacian operation L with the four-neighborhood is expressed as

Lfij = avfij − fij . (8)

Using N4, eq. (6) is rewritten as

α(N4(uij)− uij) = (Sijuij + sij), 2 ≤ i, j ≤M − 1. (9)

Setting N4(uij) = uij , we have the equation

(αI2 + S)uij = αuij − sij . (10)

For the matrix T ij = trS × I − Sij using the relation,

(αI + Sij)(αI + T ij) = α(α + trSij)I , (11)

we have

uij = uij − 1
α + trSij

(Sijuij + sij), (12)

and the iteration form

u
(m+ 1

2 )
ij = N4u

(m)
ij

u
(m+1)
ij = u

(m+ 1
2 )

ij − 1
α + trSij

(Siju
(m+ 1

2 )
ij + sij). (13)

In the original Horn-Schunck scheme, the first equation of the iteration is the
weighted summation in the eight-neighborhood of the point (i, j)�. Then, setting
N to be an appropriate operation to compute the weighted summation in an
appropriate neighborhood, we replace the first equation to

u
(m+ 1

2 )
ij = Nu

(m)
ij . (14)
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Therefore, we have the iteration form

u
(m+1)
ij = u

(m+ 1
2 )

ij − 1
α + trSij

(Siju
(m+ 1

2 )
ij + sij),

u
(m+ 1

2 )
ij = Nu

(m)
ij , if 2 ≤ i, j ≤M − 1,

u
(m+1)
1 1 = u

(m+1)
2 2 , u

(m+1)
1 j = u

(m+1)
2 j , u

(m+1)
1 M = u

(m+1)
2 M−1,

u
(m+1)
i 1 = u

(m+1)
i 2 , uM j = u

(m+1)
M−1 j ,

u
(m+1)
M 1 = u

(m+1)
M−1 2, u

(m+1)
M j = u

(m+1)
M−1 j , u

(m+1)
M M = u

(m+1)
M−1 M−1,

otherwise.(15)

The second term of the right-hand side of eq. (13) is

1
α + trSij

(Siju
(m+ 1

2 ) + sij) =
1

α + trSij
(∇f�

ij u(m+ 1
2 ) + ∂tfij)∇fij). (16)

Equation (16) implies the next property.

Proposition 1. If u
(m+ 1

2 )
ij is the solution of the equation

∇f�
ij u + (∂tf)ij = 0, (17)

then we have the relation um+1
ij = u

(m+ 1
2 )

ij , that is, the iteration does not update
the flow vector of the point.

3 Matrix Expression of Problem

3.1 Matrix Expressions of Neighborhood Operations

Since the second-order discrete differentiation is

∂2u =
u(i + 1)− 2u(i) + u(i− 1)

2
, (18)

the M ×M second-derivative matrix is tridiagonal [4,7]. For Dirichlet and Neu-
mann boundary conditions, the derivative matrices are

D1 =
1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−2 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

D2 =
1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−1 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(19)
respectively. Using D1 and D2, the discrete Laplacian operations for two-
dimensional discrete functions with the Dirichlet and Neumann boundary con-
ditions, are expressed as

L1 = IM ⊗D1 + D1 ⊗ IM , L2 = IM ⊗D2 + D2 ⊗ IM , (20)
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for 1 ≤ i, j ≤M , respectively, where In is the n× n identity matrix and A⊗B
is the Kronecker product of matrices A and B [4].

Setting

B1 =
1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 · · · 0 0
1 0 1 0 · · · 0 0
0 1 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, B2 =
1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 · · · 0 0
1 0 1 0 · · · 0 0
0 1 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (21)

the matrix Nε, ε ∈ {1, 2},
Nε = (Bε ⊗ IM + IM ⊗Bε), (22)

is the averaging operation in the four-neighborhood of each point with Dirichlet
and Neumann boundary conditions, respectively.

Let ρ(A) be the spectrum of the matrix A. Since

Bε = Dε + IM , (23)

Nε satisfies the property ρ(N ε) < 1. The discrete Laplacian Lε is expressed as

Lεu = Nεu− u. (24)

3.2 Discrete Model

For the sampled optical flow vector uij = (uij , vij)�, we define two vectorizations
of the sampled function as

v =

⎛

⎜
⎜
⎜
⎝

u11

u12

...
uMM

⎞

⎟
⎟
⎟
⎠

= vex
(
u11, u12, . . . , uMM

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u11

v11

u12

v12

...
uMM

vMM

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(25)

and

u = vec(u11, u12, · · · , uMM ) = vec

⎛

⎜
⎜
⎜
⎝

u�
11

u�
12
...

u�
MM

⎞

⎟
⎟
⎟
⎠

= vec

⎛

⎜
⎜
⎜
⎝

u11 v11

u12 v12

...
...

uMM vMM

⎞

⎟
⎟
⎟
⎠

. (26)

For these vectorizations, we define the permutation P as

Pv = u. (27)
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For the vector function uij = (uij , vij)� on the discrete plane Z2, we have
the matrix equation for the optical flow computation as

Lεu =
1
α

Su +
1
α

s, ε ∈ {1, 2} (28)

for 1 ≤ i, j ≤M and ε ∈ {1, 2}, where

L := I2 ⊗Lε (29)
S = P�Diag(S11, S12, · · · , SMM )P (30)

s = vec

⎛

⎜
⎜
⎜
⎝

s�11
s�12
...

s�MM

⎞

⎟
⎟
⎟
⎠

= P t (31)

t = vec
(
s11 s12 · · · sMM

)
. (32)

4 The Horn-Schunck Scheme with Four-Neighborhood

Using N ε, the matrix form of the Horn-Schunck scheme is expressed as

u(m+1) = N 4u
(m) − P�F−1P (SN4u

(m) + s), (33)

where

F = αI + Diag (trS11I2, trS12I2, · · · , trSMM I2)
= αI + Diag(Sij) = Diag(αI2 + Sij) (34)

F−1 = Diag

(
1

α + trS11
I2,

1
α + trS12

I2, · · · , 1
α + trSMM

I2

)

. (35)

Horn and Schunck [8] derived eq. (33) for the pointwise expression. From these
expression, we have the relations

u(m+1) − u(m) = N4(u(m) − u(m−1))− P�F−1PS(N 4(u(m−1))−N 4(u(m)))
= (I − P�F−1P S)N4(u(m−1) − u(m))
= (I − P�F−1Diag(Sij)P )N4(u(m−1) − u(m))

= P� {I − F−1Diag(Sij)
}

PN4(u(m−1) − u(m)) (36)

and

|u(m+1) − u(m)| ≤ ρ(I − F−1Diag(Sij))ρ(N 4)|u(m) − u(m−1)| (37)

Here, ρ(N 4) < 1 and

ρ(I − F−1Diag(Sij)) = max
ij

∣
∣
∣
∣1−

trSij

α + trSij

∣
∣
∣
∣ . (38)
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Since trS ≥ 0 and α > 0, we have

0 <
trSij

α + trSij
< 1, (39)

and

max
ij

∣
∣
∣
∣1−

trSij

α + trSij

∣
∣
∣
∣ < 1 (40)

From these analysis, we have the convergence theorem.

Theorem 1. Let the discrete Laplacian on the plane be

f(i, j) =
1
4

(f(i + 1, j) + f(i− 1, j) + f(i, j + 1) + f(i, j − 1))− f(i, j).

Then, the classical Horn-Schunck schemes with Dirichlet and Neumann boundary
conditions generate sequences of solutions which converge to the solutions of the
discrete equation of the Euler-Lagrange equation for α > 0.

Equation (36) shows that the convergence rate of the Horn-Schunck scheme
depends on the spectral radii of F−1S. This expression of the convergence rate
implies that the physical dimension of the regularization parameter α is the same
as that of trS. Therefore, if α � max trSij and α � min trSij the vector u
becomes the normal vector n and the eigenvector of the operation L, respectively.
Furthermore, setting α = k× trS for 1 ≤ k ≤ 10, we have the relation 0.5 ≤ ρ ≤
0.9. From this property of the spectral radii of H and N 1, we have the following
assertion.

Assertion 1. For the accurate achievement of the Horn-Schunck scheme for
optical flow computation, we are required to select

α = O(trSij) = O(|∇f |2) = O(|∇f |2max). (41)

This assertion defines a criterion for the selection of the regularization parameter
α.

5 Eight-Neighborhood Scheme

In this section, we derive a matrix expression of the operation corresponding to
the original Horn-Schunck scheme and show that the spectrum of this matrix is
less than 1, that is, we prove that the original Horn-Schunck scheme converges.
Equation (33) is expressed as

u(m+ 1
2 ) = N4u

(m)

u(m+1) = u(m+ 1
2 ) − P�F−1P (Su(m+ 1

2 ) + s). (42)

This expression is generalized as

u(m+ 1
2 ) = Nu(m)

u(m+1) = u(1+ 1
2 ) − P�F−1P (Su(m+ 1

2 ) + s). (43)
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Using the matrix expression N of the operation to compute the weighted average
in the neighborhood of each point, we derive a matrix expression of the operation
corresponding to the original Horn-Schunck scheme. Then we prove that the
spectrum of this matrix is less than 1, that is, we prove that the original Horn-
Schunck scheme converges.

Let M2 be the matrix operation which computes the average of f(i, j) on
four points,

(i− 1, j + 1)�, (i + 1, j + 1)�

(i− 1, j − 1)�, (i + 1, j − 1)�.

These four points are in the four-neighborhood in the coordinate system

k = i + j, m = i− j. (44)

Furthermore, in the (k, m)-coordinate, the boundary condition is the Dirichlet
condition on the edge and the Neumann condition on the vertices. Therefore,
M1 is expressed as

M 1 = B1 ⊗B1. (45)

This geometrical property of the points in the neighborhood of a point on the
discrete plane implies that the spectral radius of matrix M 1 is less than 1.
Furthermore, the average operation in the eight-neighborhood is expressed as

Na b
8 u = (aN 2u + bM1)u, a + b = 1, a > b > 0. (46)

Since

ρ(Na b
8 ) ≤ aρ(N 1) + bρ(M2) < 1, (47)

the original Horn-Schunck scheme converges for the Dirichlet condition. In the
original Horn-Schunck numerical scheme, the parameters a and b were selected
to be 2

3 and 1
3 . Therefore, we have the local operation on the discrete Laplacian

as

Lf(i, j) = av8f(i, j)− f(i, j), (48)

for

av8f(i, j) =
1
12

⎛

⎝
f(i− 1, j + 1) +2f(i, j + 1) +f(i + 1, j + 1)
+2f(i− 1, j) +2f(i + 1, j)

+f(i + 1, j + 1) +2f(i + 1, j + 1) +f(i + 1, j + 1)

⎞

⎠ . (49)

If i, j < 1 and M < i, j, we set f(i, j) = 0.

Theorem 2. The classical Horn-Schunck scheme for the two-dimensional prob-
lem generates sequences of solutions which converge to the solutions of the dis-
crete equation of the Euler-Lagrange equation for α > 0.
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6 Conclusions

In this paper, we directly proved the convergence property of the optical-flow
computation without any assumptions on the system matrices. Furthermore,
we introduced an iteration form which does not depend on the images. More-
over, we showed that the selection method of the regularization parameter which
guarantees accurate and stable computation.

This research was performed using the support by Grants-in-Aid for Scientific
Research from JSPS Japan.
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Appendix

Original Formulation of Horn and Schunck

In the original paper [8], Horn and Schunck adopted the relation

Δuij
∼= 3(av8uij − uij)

for

av8f(i, j) =
1
12

⎛

⎝
f(i− 1, j + 1) +2f(i, j + 1) +f(i + 1, j + 1)
+2f(i− 1, j) +2f(i + 1, j)

+f(i + 1, j + 1) +2f(i + 1, j + 1) +f(i + 1, j + 1)

⎞

⎠ .

If i, j < 1 nd M < i, j, we set f(i, j) = 0. Then, we have the approximate
numerical Euler-Lagrange equation

3α(av8u− u) = Su + s.

Therefore, replacing 3α with β we have the equation

β(av8u− u) = Su + s.

Inverse of a Matrix

For S = ss� and T = trS×I−S, we have the relation S2 = trS×S, T S = 0,
and Ts = 0. Furthermore, for μ ≥ 0,

(I + μS)(I + μT ) = (1 + μtrS)I.

and
(I + μS)−1 =

1
1 + trS

(I + μT ).

Since for Sij , we have the orthogonal decomposition

Sij =
(

∇fij

|∇fij |
∇f⊥

ij

|∇f⊥
ij |

)( trSij 0
0 0

)(
∇fij

|∇fij |
∇f⊥

ij

|∇f⊥
ij |

)�

and

1
α + trSij

I2 =
(

∇fij

|∇fij |
∇f⊥

ij

|∇f⊥
ij |

)
(

1

α+trSij
0

0 1

α+trSij

)
(

∇fij

|∇fij |
∇f⊥

ij

|∇f⊥
ij |

)�

we have the relation

F−1
ij Sij =

1
α + trSij

I2Sij =
(

∇fij

|∇fij |
∇f⊥

ij

|∇f⊥
ij |

)
(

trSij

α+trSij
0

0 0

)
(

∇fij

|∇fij |
∇f⊥

ij

|∇f⊥
ij |

)�
.

Therefore,

ρ(I2−F−1
ij Sij) =

∣
∣
∣
∣1−

trSij

α + trSij

∣
∣
∣
∣ , ρ(I −P�F−1PS) = max

ij

∣
∣
∣
∣1−

trSij

α + trSij

∣
∣
∣
∣ .
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Spectrums of Matrices

For the matrices D1 and D2, setting

D1U = Λ1U , D2V = Λ2V

where U and V are orthogonal matrices, and

Λ1 = Diag
(
λ1

M , λ1
M−1, · · · , λ1

1

)
, Λ2 = Diag

(
λ2

M , λ2
M−1, · · · , λ2

1

)
, (50)

the eigenvalues are

λ1
k = −

(

1− cos
π

M + 1
k,

)

, λ2
k = −

(
1− cos

π

M
k,
)

.

Since Bε = Dε + I, we have the eigenvalues of B1 and B2

μ1
k = cos

π

M + 1
k, μ2

k = cos
π

M
k.

Therefore, ρ(B1) < 1 and ρ(B2) < 1. Furthermore, the eigenvalues of N 2 and
M1 are μij = μ2

i +μ2
j and κij = μ1

i μ
1
j . Therefore, we have the relation ρ(N 2) < 1

and ρ(M 1) < 1.
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Abstract. Existing theories on 3D surface reconstruction impose strong
constraints on feasible object shapes and often require error-free mea-
surements. Moreover these theories can often only be applied to binary
segmentations, i.e. the separation of an object from its background. We
use the Delaunay complex and α-shapes to prove that topologically cor-
rect segmentations can be obtained under much more realistic conditions.
Our key assumption is that sampling points represent object boundaries
with a certain maximum error. We use this in the context of digitization,
i.e. for the reconstruction based on supercover and m-cell intersection
samplings.

1 Introduction

A fundamental question of image analysis is how closely a computed image seg-
mentation corresponds to the underlying real-world partition. Existing geometric
sampling theorems are limited to binary partitions, where the space is split into
(not necessarily connected) fore- and background components. In this case, the
topology of the partition is preserved under various reconstruction schemes when
the original regions are sufficiently smooth and the sampling is dense enough,
e.g. see [1,2] for the case of 3D surface reconstruction.

However, these results have two important limitations: they do not make any
predictions about the consequences of measurement errors, and they are not
applicable when there are more regions than just fore- and background. While
the second limitation is still valid today, there exist solutions for the first one:
recently alternative surface reconstruction methods have been developed, which
can deal with measurement errors [8,10].

Digital images consist of a finite number of sampling values in a regular grid.
Segmentation means to group the sampling points (i.e. pixels) into meaningful
regions. These regions can completely be described by their boundary. Thus seg-
mentation can also be done by reconstructing the segment boundaries based on
the subset of sampling points, which lie near the boundary. Our treatment of
adaptively placed sampling points on the boundary is inspired by research on
laser range scanning. Here, a number of isolated sampling points is scattered over
the surface of the object of interest, and the task is to reconstruct the surface
from the set of points. A successful solution of this problem is the concept of
α-shapes [5,6]. The α-shape is essentially defined as the subset of the Delaunay
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triangulation of the points where the Delaunay cells’ radius is below α ∈ R
+.

Under certain conditions, an α-shape is homotopy equivalent or even homeo-
morphic to the desired object surface. By applying this idea to the problem of
image segmentation, a new condition on object shape could recently be derived
that ensures homotopy equivalence of the digital segmentation with the original
analog partitioning of the space [13]. In this work we prove such properties even
when the segmentation is subject to measurement errors.

2 Preliminaries

To segment a geometric image means to partition the image space (i.e. the
domain of the image function) into meaningful regions. The image space does not
have to be the two-dimensional plane, e.g. for CT or MRT scans it is the three-
dimensional space. Each region corresponds to a relevant (part of an) object
in the real world and its reconstruction should preserve as much properties as
possible. The partition of the image space to be recovered is defined as follows:

Definition 1. Let the image space I be R
n with n ∈ N. A partition of the image

space is defined by a finite set of pairwise disjoint regions R = {ri ⊂ I}, such
that each region ri ∈ R is a connected open set and the union of the closures of
the regions covers the whole space,

⋃
i ri = I. The boundary of the partition is

B :=
⋃

i ∂ri. Two regions ri, rj are called m-neighbors if the intersection ri ∩ rj

contains an m-dimensional manifold with boundary, but no (m+1)-dimensional
manifold with boundary. Two (n− 1)-neighbors are also called direct neighbors.

The simplest case of a partition is a binary partition, where the regions can be
classified into foreground and background, such that every direct neighbor of
a foreground region is a background region and vice versa. Then segmentation
means separation of one (not necessarily connected) set from the background.
Such a set is called a shape.

Most of the known results on topologically correct object or surface recon-
struction are restricted to certain subclasses of shapes, having minimal bounds
on the surface curvatures, like r-regular sets [9,4,12] or sets with certain local
feature size [1,2]. This implies that regions cannot have corners, and junctions
of three or more regions are impossible. These restrictions are somewhat relaxed
by the notion of r-halfregular partitions, where an osculating r-ball must exist
at least in the foreground or the background, and the topology must not change
under either morphological opening or closing with a ball of radius ≤ r [11].
Corners are now possible, but the partition is still binary and has no junctions.
In this paper, the class of feasible partitions of the space is extended as follows:

Definition 2. A plane partition of the space is r-stable when its boundary B
can be dilated with a closed disc of radius s without changing its homotopy type
for any s ≤ r.

In other words, we can replace an infinitely thin boundary with a strip of width
2r such that the number and enclosure hierarchy of the resulting regions is



276 P. Stelldinger

(a) (b) (c) (d)

Fig. 1. (a) The homotopy type of an r-stable plane partition does not change when
dilated with a disc of radius of at most r (light gray), while dilations with bigger radius
(dark gray) may connect different parts as marked by the circle. The α-dilation (b) of
the boundary of a two-dimensional α-stable partition may not be homotopy equivalent
to the union (c) of the α-discs centered at the boundary sampling points. Thus the α-
shape (d), which is always homotopy equivalent to the union of discs (c), may contain
unwanted holes consisting of Delaunay triangles of radius greater than α. Thus there
exists an α-disc centered in the hole which does not cover any boundary sampling
point, as shown in (d).

preserved. In particular, “waists” are forbidden, whereas junctions are allowed,
see Fig. 1(a). This includes r-regular and r-halfregular partitions, but also allows
non-binary partitions and junctions and models real images much better. Since
we want to deal with measurement errors (i.e. noise) when sampling the partition,
we define a sampling of the surface as an approximation of the boundary of the
partition with a finite set of adaptively placed sampling points. The sampling
points are selected somehow “near” the boundary. We formalize this as follows:

Definition 3. A finite set of sampling points S = {si ∈ R
2} is called a (p, q)-

sampling of the boundary B when the distance of every point b ∈ B to the nearest
point in S is at most p, and the distance of every point s ∈ S to the nearest point
in B is at most q. The elements of S are called boundary sampling points. The
sampling is said to be strict when all boundary sampling points are exactly on
the boundary, i.e. q = 0.

Non-zero values of q can be caused by systematic or statistical measurement er-
rors, but also by the sampling method used. Boundary sampling points may be
determined in various ways (section 3), but this only matters in so far as it de-
termines the accuracy of the sampling, i.e. the values of p and q. Once computed,
we consider boundary sampling points as isolated points that somehow define
the digital boundary and connect them by means of the Delaunay complex. Each
element of the Delaunay complex is either the convex hull of a finite subset of
the sampling points, such that all chosen sampling points lie on the boundary of
a common hypersphere and no other sampling point is inside the hypersphere,
or the intersection of two other elements of the complex. The hypersphere center
of such a Delaunay cell is called the center point of the cell and the hypershpere
radius is also called the radius of the cell. An m-dimensional cell of the complex
is called m-cell. In order to approximate the boundary of the partition, we want
to remove those edges and triangles from the Delaunay triangulation that are
not related to the boundary. A useful subset of the Delaunay complex is defined
by the α-complex introduced in [5]:
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Definition 4. The α-complex Dα(S) of a set of points S is defined as the sub-
complex of the Delaunay complex of S which contains all cells C such that

– the radius of the smallest sphere containing the sampling points of C is
smaller than α, and it contains no other point of S, i.e. C0 ∩ S = ∅, or

– an incident cell C′ with higher dimension is in Dα(S).

The polytope |Dα(S)|, i.e. the union of all elements of Dα(S), is called α-shape.

Since cells are removed from the Delaunay complex, the α-complex has holes
which hopefully correspond to the regions we are trying to segment. In order
to determine when this is the case, the following theorem is of fundamental
importance (the proof can be found in [6]):

Theorem 1 (Edelsbrunner). The union of closed α-balls with centers at the
points si ∈ S covers |Dα|, and the two sets are homotopy equivalent.

Consequently, the α-shape |Dα| is homotopy equivalent to the original partition
of the space if and only if the dilation of the boundary sampling points with α-
balls is homotopy equivalent to the boundary of the partition. This requirement
is indeed fulfilled in certain situations: In [4] it is proved that |Dα| is even
homeomorphic to B if B is the boundary of a two-dimensional r-regular set with
p < α < r and q = 0. In three dimensions the authors recently derived an analog
result [12]. There the α-shape itself cannot be guaranteed to be homeomorphic,
but it can be used to derive a homeomorphic surface approximation in a very
simple way: with defining the outer boundary of the α-shape as the union of all
triangles of the corresponding α-complex, which can be seen from the outside (i.e.
from a point being outside the original object), one gets the following theorem
(the proof can be found in [12]):

Theorem 2 (Stelldinger). Let A be a three-dimensional r-regular set and S be
an α-sampling of its boundary ∂A such that 2α < r. Then the polytope |Dα| is of
the same homotopy type as ∂A, and the outer boundary of |Dα| is homeomorphic
to ∂A.

Unfortunately, these approaches no longer apply when the original partition is
not r-regular and/or the boundary sampling points are not exactly on the origi-
nal boundary, i.e. they are noisy. Fig. 1(b)-(d) shows a two-dimensional example
where the r-dilation of the boundary is homotopy equivalent to the boundary
(i.e. the partition is r-stable), but the dilation of the boundary sampling points
is not. This problem has already been solved for the two-dimensional case in [13].
There it is shown that by filling small regions one gets a boundary representation
with correct homotopy type such that the separated regions are homeomorphic
to the original ones. These small regions can uniquely be identified if the sam-
pling is dense enough. In three or higher dimensional spaces filling such small
regions is not enough, since reconstruction artifacts can have a more compli-
cated topological structure, like e.g. tunnels or bridges. The rest of the paper is
devoted to the question what can be said under these more general conditions
in case of higher dimensional spaces.
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p1

p2

p4

v

p5

p3

(a) (b) (c)

Fig. 2. (a) Any circumcircle around p4 and p5 contains p1, p2, and p3 (see text). (b)
The supercover digitization contains all sampling points whose pixel facets intersect
the arc. (c) Where the boundary intersects the dual grid, the nearest sampling points
form the grid intersection digitization.

As can be seen in Figure 1(b)-(d), if we have an object which is not r-regular,
but also if the sampling is not strict, i.e. a (p, q)-sampling with q > 0, the
complement of the α-shape reconstruction may have new small regions, which
lie inside the α-dilation of the original boundary. In order to get a topologically
correct boundary reconstruction we must at least fill these small regions. In the
following, the components of |Dα(S)|c will be called α-holes. As we will see, the
spurious holes are restricted in their size. Thus we define (α, β)-holes in order to
distinguish between spurious and wanted α-holes:

Definition 5. Let Dα(S) be the α-complex of a sampling S and |Dα(S)| be
its α-shape. Then the α-holes of |Dα(S)| are the components of |Dα(S)|c. The
(α, β)-holes of |Dα(S)| are the α-holes H, where the largest radius of some n-cell
in H is at least β ≥ α. The union of the α-shape |Dα| with all α-holes of Dα

that are not (α, β)-holes is called the (α, β)-shape reconstruction.

For simplicity, we also use the term “hole” for the component which contains the
infinite region. It is an (α, β)-hole for arbitrary large β. It follows from Theorem 1
that there is a 1-to-1 relation between α-holes and the holes in the union of α-discs
around the sampling points. The following lemma establishes that a similar rela-
tionship exists for (α, β)-holes (we prove the lemma for the n-dimensional case):

Lemma 1. An α-hole h is an (α, β)-hole if and only if it contains a point v
whose distance from the nearest sampling point is at least β.

Proof. I (dH(v ∈ h, S) ≥ β ⇒ h is an (α, β)-hole): when v is in the infinite re-
gion, the claim follows immediately. Otherwise, v is contained in some Delaunay
n-cell. By assumption, the corners of this triangle must have distance ≥ β from
v. Therefore, the radius of the n-cell must be at least β, and the claim follows.
II (h is an (α, β)-hole ⇒ ∃ v ∈ h with dH(v, S) ≥ β): by assumption, the closure
of h contains a Delaunay n-cell t with radius of at least β. Consider its center
point v (i.e. the center of its Delaunay sphere). If it is within the n-cell t, it
is also in h and the claim follows. Otherwise, it is at least in some (α, β)-hole,
and we must prove that t is in the same hole. Suppose to the contrary that v
and t are in different α-holes. Then there exists a Delaunay cell t′ (this does not
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have to be an n-cell)between t and v whose covering radius (i.e. the radius of
the smallest covering ball) is smaller than α. The corners of t′ cannot be inside
the Delaunay sphere of t because otherwise t would not be a Delaunay n-cell.
t′ cannot contain v because its covering radius would then be at least β. Now
consider Figure 2(a). It shows for the two-dimensional case the 2-cell t with cor-
ners p1, p2, p3 and its Delaunay circle (gray) with center point v. The points p4

and p5 are the end points of one side of t′. Their distance |p4p5| must be greater
than |p1p3|. Consequently, any covering circle with radius ≤ α (dashed) around
p4 and p5 contains t, contrary to the condition that it must not contain any
other sampling point. This obviously also holds in higher dimensions. The claim
follows from the contradiction. 
�
Now we can use the notion of (α, β)-holes to “repair” α-complexes that contain
too many holes. After filling all α-holes which are not (α, β)-holes we get a one-to
one-mapping of the components of ∂Ac to the components of the complement
of the (α, β)-shape reconstruction:

Theorem 3. Let P be an r-stable partition of the space R
n, and S be a (p, q)-

sampling of P’s boundary B. Then the (α, β)-shape reconstruction R preserves
connectivity and neighborhood relations and defines a one-to one-mapping of the
(α, β)-holes of R to the regions ri of P, if (1) p < α ≤ r − q, (2) β = α + p + q
and (3) every region ri contains an open γ-disc with γ ≥ β + q > 2(p + q).

Proof. Let U be the union of open α-balls centered at the points of S. Further-
more, let B⊕ = B ⊕ B0

α+q be the dilation of B with an open (α + q)-ball, and
r�i = ri  Bα+q the erosion of region ri ∈ P with a closed (α + q)-ball.

– According to the definition of a (p, q)-sampling, the dilation of B with a
closed q-ball covers S. Consequently, B⊕ covers U . Therefore, U cannot have
fewer connected components than B⊕. B⊕ has as many components as B
due to the r-stability of the partition P . Conversely, since α > p, every open
α-ball around a point of S intersects B, and the union U of these balls covers
the entire boundary B. It follows that U cannot have more components than
B. The number of components of B and U is thus equal. Due to the same
homotopy types of U and |Dα| (according to Lemma 1), this also holds for
the components of |Dα|.

– Since P is r-stable with r ≥ α + q, each r�i is a connected set with the same
topology as ri. The intersection r�i ∩B⊕ is empty, and r�i cannot intersect
U ⊂ B⊕ and |Dα| ⊂ U . Hence, r�i is completely contained in a single α-hole
of |Dα|.

– Due to condition 3, ri contains a point whose distance from B is at least
γ = β+q. Its distance from S is therefore at least γ−q = β. Due to Lemma 1,
the α-hole which contains r�i is therefore also an (α, β)-hole.

– Since B⊕ covers U and U covers B, no (α, β)-hole can intersect both r�i
and r�j (i �= j). It follows from this and the previous observation, that every
region ri can be mapped to exactly one (α, β)-hole which will be denoted hi.

– An α-hole that does not intersect any region r�i must be completely con-
tained within B⊕. Every point v ∈ B⊕ has a distance d < α + q to the
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nearest point of B. In turn, every point in B has a distance of at most p to
the nearest point in S. Hence, the distance from v to the nearest point of
S is d′ < α + p + q = β. According to Lemma 1, this means that an α-hole
contained in B⊕ cannot contain an n-cell with radius β and cannot be an
(α, β)-hole.

– The previous observation has two consequences: (i) All holes remaining in
R intersect a region r�i . Therefore, the correspondence between ri and hi

is 1-to-1, and B and |R| enclose the same number of regions. (ii) All dif-
ferences between R and Dα (i.e. all Delaunay cells re-inserted into R) are
confined within B⊕. This implies that |R| cannot have fewer components
than B⊕ and B. Since all re-inserted cells are incident to Dα, |R| cannot
have more components than |Dα|, which has as many components as B (see
first observation). Hence, B and |R| have the same number of components.

– Consider the components of the complement (r�i )C and recall that r�i is a
subset of both ri and hi for any i. Since B and |R| have the same number
of components, it is impossible for hC

i to contain a cell that connects two
components of (r�i )C . This means that the sets rC

i and hC
i have the same

number of components. This finally proves that the constructed one-to one-
mapping preserves the neighborhood relations. 
�

Filling spurious holes in the α-shape reconstruction is a necessary step for get-
ting a topologically correct boundary reconstruction. But for n ≥ 3 there are
also other problems regarding topology: although the (α, β)-shape reconstruc-
tion separates the different regions from each other, these regions may have small
tunnels and/or other topological changes inside B⊕. In order to identify and re-
move these cases, we will at first apply a homotopy type preserving thinning:

We will denote an m-cell C in a cell complex D as simple if the number
of cells of D which contain C is equal to one. Now the containing cell must
be an (m + 1)-cell and the removal of the two cells does neither change the
homotopy type of the complex nor the topology of the background regions. Now
the thinning algorithm for the (α, β)-shape reconstruction is as follows:

1. Find all simple m-cells (n > m ≥ 0) of the given (α, β)-shape reconstruction
and put them in a priority queue (the sorting will be discussed below).

2. As long as the queue is not empty:
(a) Get the m-cell e with the highest priority from the queue.
(b) If e is not simple anymore, it has lost this property during the removal

of other cells. Skip the following and recommence with step 2.
(c) Otherwise, remove e and the adjacent (m+1)-cell t ∈ R from the bound-

ary reconstruction.
(d) Check whether the other cells adjacent to t have now become simple and

put them in the queue if this is the case.

Obviously the algorithm terminates for any finite cell complex, and the re-
sulting boundary reconstruction contains no n-cells, i.e. it is thin. Since we want
a boundary reconstruction which is as simple as possible in a topological sense
(i.e. as few as possible tunnels, etc.), but which still separates the different regions
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from each other, we want to have a cell complex, where every cell is adjacent
to at least two different background components (i.e. regions of the (α, β)-shape
reconstruction). Thus we remove every cell, which is not adjacent to two different
background regions. Since an (n− 1)-cell, which is not adjacent to two different
background regions, will already be removed by the above thinning algorithm,
we only have to check m-cells with m < n − 1. This can be done locally, since
these cells are characterized by having no adjacent (m + 1)-cell in the complex.
Thus the whole algorithm is as follows:

Thinned (α, β)-shape reconstruction algorithm:

1. Given a (p, q)-sampling S of the boundary of some partition of the space,
compute the α-complex of S with some α > p.

2. Add all cells to the complex, which belong to an α-hole which is no (α, β)-
hole for β = α + p + q.

3. Find all simple m-cells (for any m with n > m ≥ 0) of the given (α, β)-
shape reconstruction and put them in a priority queue (the sorting will be
discussed below).

4. As long as the queue is not empty:
(a) Get the m-cell e with the highest priority from the queue.
(b) If e is not simple anymore, it has lost this property during the removal

of other cells. Skip the following and recommence with step 4.
(c) Otherwise, remove e and the adjacent (m+1)-cell t ∈ R from the bound-

ary reconstruction.
(d) Check whether the other cells adjacent to t have now become simple and

put them in the queue if this is the case.
5. For m going from n− 2 to 0 do:

(a) Remove all m-cells of the complex, which do not have an adjacent (m+1)-
cell in the complex.

Theorem 4. Let P be an r-stable partition of the space R
n, and S be a (p, q)-

sampling of P’s boundary B. Then the thinned (α, β)-shape reconstruction algo-
rithm results in a cell complex D with |D| having the same homotopy type as B,
and the components of Bc are topologically equivalent to the components of |D|c,
if (1) p < α ≤ r− q, (2) β = α + p + q and (3) every region ri contains an open
γ-disc with γ ≥ β + q > 2(p + q).

Proof. The resulting reconstruction obviously separates the components of |D|c
from each other, which can be mapped one-to one onto the components of Bc.
Since the α-ball reconstruction covers B, the α-shape reconstruction contains
a polygonal surface which is of the same homotopy type as B. Thus also the
(α, β)-shape reconstruction contains such a polygonal surface. Applying only
the thinning algorithm results in a an object B′ being a deformation retract of
the (α, β)-shape reconstruction. Thus it also contains a polygonal surface B′′,
which is of the same homotopy type as B. This surface B′′ is everywhere thin,
i.e. any of its m-cells with m ≤ n − 2 has at least two neighboring m + 1-
cells in B′′. Thus B′′ remains unchanged during the cell complex simplification.
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Any other cell of B′ will be removed. Thus B′′ = |D|. Since the boundaries of
any component of Bc and the corresponding component of |D|c are not only of
the same homotopy type but also homeomorphic (because both are composed
of components of the same homotopy type, which are all (n − 1)-dimensional
manifolds without boundary), the components are also homeomorphic to each
other. 
�
The complexity of the algorithm is dominated by the Delaunay tetrahedrization
which is known to be O(n2) in the number of sampling points. As far as re-
gion topology is concerned, the ordering of the m-cells in the priority queue is
arbitrary. But we think, that orderings should be favored, which lead to visu-
ally appealing results, e.g. by emphasizing flat surfaces. This can be done in the
following way:

Definition 6. The minimal (α, β)-shape reconstruction is the result of the thin-
ned (α, β)-shape reconstruction algorithm, when using radii of the simple m-cells
as priority, i.e. m-cells with big radius are the first to be removed.

When only using the thinning algorithm after (α, β)-shape reconstruction, the
resulting regions are correctly separated from each other. Moreover by using the
cell radii as ordering criterion, the resulting hypersurface is as smooth as possible,
since the size of the (n− 1)-cells is minimized. Thus, since a minimal boundary
reconstruction is a shortest possible one with correct topology, the surviving
edges connect sampling points closest to each other. Neighboring sampling points
therefore align in an optimal way on the thinned boundary.

3 Application to Sampling Schemes

In Theorem 3, p and q are assumed given. We now make their meaning and
consequences more intuitive, by computing them for two of the most common
sampling schemes. Given a sampling grid S (e.g. a cubic grid), we want to de-
fine a subset of sampling points which approxiates the boundaries of a partition
of the space. Obviously simple subset sampling of the boundary is not a good
choice, since in general hardly no sampling point will lie exactly on this surface.
Alternatively one can choose the set of sampling points whose voxels (Voronoi
regions) intersect the boundary of the partition. Such a method is called super-
cover sampling, since it is related to supercover digitization [7].

Definition 7. Let S ⊂ R
n be an r′-grid (i.e. the maximal distance from any

point to the nearest sampling point is at most r′). The supercover sampling of a
set A ⊂ R

n based on S is the set S′ of all sampling points s ∈ S whose hypervoxel
intersects A, see Figure 2(b).

Lemma 2. The supercover sampling S′ of a set A based on an r′-grid, is an
(r′, r′)-sampling of A.

Proof. The distance of any sampling point in S′ to the nearest point in A can be
at most r′, since S′ is based on an r′-grid. Since the hypervoxels of the supercover
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m = 3 m = 2 m = 1 m = 0

Fig. 3. Given s sampling point (s) in a cubic grid, the shaded region shows the inter-
section of VS(s) with the union of all adjacent m′-cells of the Delaunay complex for
m′ ≤ m

sampling cover A, the distance of any point of A to the nearest sampling point
in S is also at most r′. 
�
If the object to be digitized is a curve in R

n, the supercover sampling is (n− 1)-
connected (i.e. connected via cells of dimension of at least n− 1), since for any
point on the curve there exists a neighborhood, which is covered by the hyper-
voxels. However, one often wants a curve to be represented by a sampling, which
is “as thin as possible”, i.e. only 0-connected. This is fulfilled for the square
grid in two dimensions by the grid intersection sampling [7], see Figure 2(c). It
is well-known, that the grid intersection digitization is a subset of the super-
cover digitization on a square grid. The grid intersection sampling can easily be
generalized to arbitrary grids in any dimension:

Definition 8. Let S ⊂ R
n be a sampling grid. Further, for any sampling point

s ∈ S let Gm(s) be the intersection of the hypervoxel VS(s) with the the union
of all m′-cells, m′ ≤ m, of the Delaunay complex of S being adjacent to s. Then
the m-cell intersection sampling of a set A ⊂ R

n is defined as the union S′ of
all sampling points s ∈ S, where Gm(s)∩A is not empty, see Figure 2(c) for en
example of the 1-cell intersection sampling in 2D.

Thus the 1-cell intersection sampling based on a square grid is equal to the grid
intersection sampling. Moreover the 0-cell intersection sampling is the same as
the subset sampling and the n-cell intersection sampling equals the supercover
sampling in R

n. This directly implies that an m1-cell intersection sampling is
always subset of an m2-cell intersection sampling of a given object, if they are
based on the same sampling grid and if m1 < m2. Figure 3 shows Gm(s) for
different m in case of a cubic grid. While the m-cell intersection sampling of a
connected set does not need to be connected in case of m < n− 1, it is (n− 1)-
connected if m = n, since then it is equal to the supercover sampling. Moreover
for m = n− 1 it is 0-connected, if the grid is not degenerated:

Lemma 3. Let S be the (n − 1)-cell intersection sampling of a connected set
based on a not degenerated grid. Then S is 0-connected.

Proof. If A is empty or if A consists of only one point, the proof is obvious.
Otherwise let x, y be two arbitrary points in A and let P be a path in A from
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x to y. If x, y and p lie in the same n-cell of the Delaunay complex, there is
nothing to show. Thus let p go through at least two n-cells of the Delaunay
complex. Since the union of the (n−1)-cells of the complex is equal to the union
of all Gn−1(s), and since any two sampling points with a common n-cell in the
Delaunay complex are always at least 0-connected, the (n − 1)-cell intersection
sampling of p is 0-connected. Thus S must also be 0-connected. 
�

Now we will show that the (n−1)-cell intersection sampling is of higher sampling
accuracy (i.e. lower q) than the supercover sampling, while the sampling density
(i.e. the smallest possible value of p) is not as high.

Lemma 4. Let S′ be a not degenerated r′-grid. When each component of a set A
is intersected by at least one (n−1)-cell of the Delaunay complex of S′, the (n−1)-
cell intersection digitization S of A based on the grid S′, is a (2r′, q)-sampling of
A′ with q < r′. If S′ is a Cartesian r′-grid, S is even a (2r′,

√
n−1√

n
r′)-sampling.

Proof. The set of (n− 1)-cells the Delaunay complex of a not degenerated grid
partitions the space, such that any n-cell has a diameter of at most 2r′. Thus,
since each component of A intersects at least one (n − 1)-cell, the distance of
any point of A to the nearest sampling point of S is at most 2r′.

For any sampling point s ∈ S there exists an adjacent (n − 1)-cell which
intersects A inside the hypervoxel of S. Any such intersection point has distance
of smaller than r′ to s. In case of a Cartesian grid, the sidelength of the (n −
1)-cells is 2√

n
r′ and the largest distance of a point in the intersection of the

hypervoxel and an (n− 1)-cell of s is
√

n−1√
n

r′. 
�

Fig. 4. Artificial boundary samples derived from a CT scan of the
Stanford bunny (on courtesy of the Stanford Volume Data Archive
graphics.stanford.edu/data/voldata/). Left: Sparse subset of boundary voxels due
to 2-cell intersection sampling. Right: Result of thinned (α, β)-shape reconstruction.
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We can now simply deal with sampling errors due to noise or blurring. We just
have to add the expected positional error caused by these influences to the above
computed positional error caused by the sampling.

4 Conclusions

This paper describes how to reconstruct a surface topologically correct from a
sufficiently dense set of surface sampling points in the presence of measurement
errors due to sampling but also due to noise and other influences. The theo-
rem applies to a much wider class of shapes (r-stable partitions) than previous
approaches. The situation in real images is thus modeled much more faithfully
because shapes may now have corners and junctions, and standard segmentation
algorithms can be used. Moreover an analysis on the amount of the measurement
errors is given for the case of some of the mostly used digitization methods.
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Abstract. The purpose of this paper is to introduce an algorithm that
can detect the most unusual part of a digital image. The most unusual
part of a given shape is defined as a part of the image that has the
maximal distance to all non intersecting shapes with the same form.

The method can be used to scan image databases with no clear model
of the interesting part or large image databases, as for example medical
databases.

1 Introduction

In this paper we are trying to find the most unusual/rare part with predefined
size of a given image. If we consider an one-dimensional quasi-periodical image,
as for example electrocardiogram (ECG), the most unusual parts with length
about one second will be the parts that correspond to rhythm abnormalities [5].
Therefore they are of some interest. Considering two dimensional images, we can
suppose that the most unusual part of the image can correspond to something
interesting of the image.

Of course, if we have a clear mathematical model of what the interesting part
of the image can be, it would be probably better to build a mathematical model
that detects those unusual characteristics of the image part that are interesting.
However, as in the case of ECG, the part that we are looking for, can not be
defined by a clear mathematical model, or just the model can not be available. In
such cases the most unusual part can be an interesting instrument for screening
images.

To state the problem, we need first of all a definition of the term “most unusual
part.” Let us chose some shape S within the image A, that could contain that
part and let us denote the cut of the figure A with shape S and origin r by
AS(ρ; r), e.g.

AS(ρ; r) ≡ S(ρ)A(ρ + r),
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where ρ is the in-shape coordinate vector, r is the origin of the cut AS and we
used the characteristic function S(.) of the shape S. Further in this paper we
will omit the arguments of AS . We can suppose that the rarest part is the one
that has the largest distance with the rest of the cuts with the same shape.

Speaking mathematically, we can suppose that the most unusual part is lo-
cated at the point r, defined by:

r = argmax
r

min
r′:|r′−r|>diam(S)

||AS(r)−AS(r′)||. (1)

Here we assume that the shifts do not cross the border of the image. The norm
||.|| is assumed to be L2 norm1.

Because the parts of an image that intersect significantly are similar, we do not
allow the shapes located at r′ and r to intersect, avoiding this by the restriction
on r′ : |r′ − r| > diam(S).

If we are looking for the part of the image to be rare in a context of an
image database, we can assume that further restrictions on r′ can be added, for
example restricting the search to avoid intersection with several images.

The definition above can be interesting as a mathematical construction, but if
we are looking for practical applications, it is too strict and does not correspond
exactly to the intuitive notion of the interesting part as there can be several
interesting parts. Therefore the correct definition will be to find the outliers of
the distribution of the distances between the blocks ||.||.

If the figure has N2 points, and ||S|| � ||A||, in order to find deterministically
the most interesting part, we need N4 operations. This is unacceptable even for
large images, not concerning image databases. Therefore we are looking for an
algorithm that provides an approximate solution of the problem and solves it
within some probability limit.

As is defined above in Eq.(1), the problem is very similar to the problem
of location of the nearest neighbor between the blocks. This problem has been
studied in the literature, concerning Code Book and Fractal Compression [1].
However, the problem of finding r in the above equation, without specifying r′,
as we show in the present paper, can be solved by using probabilistic methods
avoiding slow calculations.

Summarizing the above statements, we are looking for an algorithm that two
blocks are similar or different with some probability.

2 The Method

2.1 Projections

The problem in estimating the minima of Eq. (1) is complicated because the
block is multidimensional. Therefore we can try to simplify the problem by
1 Similar results are achieved with L1 norm. The algorithm was not tested with Lmax

norm due to its extreme noise sensitivity. We use L2 because of its relation with
PSNR criteria that closely resembles the human subjective perception.
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Fig. 1. The original test image. X-ray
image of a person with ingested coin.
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Fig. 2. The distribution of the projec-
tion value for square shape with a size
48x48 pixels

projecting the block B ≡ AS(r) in one dimension using some projection operator
X . For this aim, we consider the following quantity:

b = |X.B1 −X.B| = |X.(B1 −B)|, |X | = 1. (2)

The dot product in the above equation is the sum over all ρ-s:

X.B ≡
∑

ρ

X(ρ)B(ρ; r).

If X is random, and uniformly distributed on the sphere of corresponding di-
mension, then the mean value of b is proportional to |B1 − B|; 〈b〉 = c|B1 − B|
and the coefficient c depends only on the dimensionality of the block. However,
when the dimension of the block increases, the two random vectors (B1−B and
X) are close to orthogonal and the typical projection is small. But if some block
is far away from all the other blocks, then with some probability, the projection
will be large. The method resembles that of Ref. [4] for finding nearest neighbor.

As mentioned above we ought to look for outliers in the distribution. This
would be difficult in the case of many dimensions, but easier in the case of one
dimensional projection.

We will regard only projections orthogonal to the vector with components
proportional to X0(ρ) = 1, ∀ρ. The projection on the direction of X0 is pro-
portional to the mean brightness of the area and thus can be considered as not
so important characteristics of the image. An alternative interpretation of the
above statement is by considering all blocks to differ only by their brightness.

Mathematically the projections orthogonal to X0 have the property:
∑

ρ

X(ρ) = 0. (3)
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The distribution of the values of the projections satisfying the property (3) is
well known and universal [9] for the natural images. The same distribution seems
to be valid for a vast majority of the images. The distribution of the projections
derived for the X-ray image, shown in Fig. 1, is shown in Fig. 2.

Roughly speaking, the distribution satisfies a power law distribution in log-
log scale if the blocks are small enough with exponential drop at the extremes.
When the blocks are big enough, the exponential part is predominant.

If Ar and A′
r have similar projections, then they will belong to one and the

same or to neighbors bins.
Therefore we can look for blocks that have a minimal number of similar and

large projections. But these, due to the universality of the distribution, are ex-
actly the blocks with large projection values.

As a first approximation, we can just consider the projections and score the
points according to the bin they belongs to. The distribution can be described
by only one parameter that, for convenience, can be chosen to be the standard
deviation σX of the distribution of X.B.

The notion of “large value of the projection” will be different for different
projections but will be always proportional to the standard deviation.2 Therefore
we can define a parameter a and score the blocks with |X.B| > aσX .

This procedure consists of the following steps:

0. Construct a figure B with the same shape as A and with all pixels equal
to zero.

1. Generate a random projection operator X , with carrier with shape S, zero
mean and norm one.

2. Project all blocks (convolute the figure). We denote the resulting figure as
C.

3. Calculate the standard derivation σX of the result of the convolution.
4. For all points of C with absolute values greater than aσX , increment the

corresponding pixel in B.
Repeat steps 1-4 for M number of times.
5. Select the maximal values of B as the most singular part of the image.

The number of iterations M can be fixed empirically or until the changes in
B, normalized by that number, become insignificant. Following the algorithm,
one can see that the time to perform it is proportional to MN2 log N . The speed
per image of size 1024× 2048 on one and the same computer, with S, a square
of size 56× 56 points, is about 3 seconds compared to about an hour, using the
direct search implementing the Eq. (1).3

Some results are presented in Figs.3,4, where we used square shapes with
different size, 30 projection operators and different values of a.

2 In general, the standard deviation will be larger for projections with larger low-
frequency components. That is why we choose the criterion proportional to σX and
not as absolute value.

3 If the block is small enough, the convolution can be performed even faster in the
space domain and it is possible to improve the execution time.
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Fig. 3. Score values for different size of the shape (from left to right: 24x24,32x32,
40x40,56x56). The value of the parameter a in all the cases is 22.
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Fig. 4. Score values for different parameter a (from left to right: a = 8,10,12,16). The
size of the shape is 24x24.

Because the distribution of the projections (Fig. 2) is universal, it is not
surprising that the algorithm is operational for different images. We have tested
it with some 100 medical Xray images and the results of the visual inspections
were good4.

It can be noted that the number of projection operators is not critical and can
be kept relatively low and independent of the size of the block. Note that with
significantly large blocks, the results can not be regarded as en edge detector.
This empirical observation is not a trivial result at all, indicating that the degrees
of freedom are relatively few, even with large enough blocks, something that
depends on the statistics of the images and can not be stated in general. With

4 Some of the images require normalization of the projection with the deviation of the
block B.



Detecting the Most Unusual Part of a Digital Image 291

more than 20 projections we achieve satisfactory results, even for areas with
more than 3000 pixels. The increment of the number of the projections improves
the quality, but with more than 30 projection practically no improvement can
be observed.

It is possible to look at that algorithm in a different way. Namely, if we are try-
ing to reconstruct the figure by using some projection operators XC (for example
DCT as in JPEG), then the length of the code, one uses to code a component with
distribution like Fig. 2, will be proportional to the logarithm of the probability of
some value of the projection XC .A. Therefore, what we are scoring is the block
that has some component of the code larger than some length in bits (here we ig-
nore the psychometric aspects of the coding). Effectively we score the blocks with
longer coding, e.g. the ones that have lower probability of occurrence.

Using a smoothed version of the above algorithm in step 4, without adding
only one or zero, but for example, penalizing the point with the square of the
projection difference in respect to the current block divided by σ, and having in
mind the universal distribution of the projection, one can compute the penalty
function as a function of the value of the projection x, that results to be just
1/2 + x2/2σ2. Summing over all projections, we can find that the probability of
finding the best block is approximated given by 1/2[1 + erfc(M(1/2 + x2/2σ2))]
as a consequence of the Central Limit Theorem. The above estimation gives an
idea why one need few projections to find the rarest block, in sense of the global
distribution of the blocks, almost independently of the size of the block. The only
dependence of the size of the blocks is given by σ2 factor, that is proportional
to its size. Further, the probability of error will drop better than exponentially
with the increment of M .

The non-smoothed version performs somewhat better that the above estima-
tion in the computer experiments.

2.2 Network

The pitfall of the consideration in the previous subsection is that the detected
blocks are rare in absolute sense, e.g. in respect to all figures that satisfy the
power law or similar distribution of the projections. Actually this is not desirable.
If for example in X-ray image appear several spinal segments, although these can
be rare in the context of all existing images, they are not rare in the context of
thorax or chest X-ray images.

Therefore the parts of the images with many similar projections must “cancel”
each other. This gives us the idea to build a network, where its components with
similar projection are connected by a negative feedback corresponding to the
blocks with similar projections.

As we have seen in the previous section, the small projection values are much
more probable and therefore less informative. Using this empirical argument, we
can suggest that the connections between the blocks with large projections are
more significant.

The network is symmetrical by its nature, because of the reflexivity of the
distances. We can try to build it in a way similar to the Hebb network [2] and
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define Lyapunov o energy function of the network. Thus the network can be
described in terms of artificial recursive neural network. Connecting only the
elements of the image that produce large projections, the network can be build
extremely sparse [10], which makes it feasible in real cases.

Let us try to formalize the above considerations. For each point we define a
neuron. The neurons corresponding to some point r and having projection x
receive a positive input flux, which is proportional to − log p(x), where p is the
probability of having projection with value x. The same element, if its projection
is large, also receives a negative flux from the points r′ with nearest projections
that satisfy the condition |r − r′| > diam(S). The flux in general is a function
of p(x) and x′ − x.

As a first approximation we assume that the flux is constant with p(x) and the
dependence on x′−x is trivial: the weight is 1 if |x′−x| < δ and zero otherwise,
where δ is some parameter of the model.

In other words, we reformulate our problem in terms of a Hebb-like neural
network with external field

h = −h0

M∑

i=1

log p(xi) (4)

and weights

wrr′ = −
M∑

i=1

∑

|xi| > aσi,
|x′

i| > aσi,

|x′
i − xi| < δ, x′

ixi > 0

1. (5)

The extra parameter h0 balances between the global and the local effects. It can
be chosen in a way that the mean fluxes of positive and negative currents are
equal in the whole network. The parameter δ, as a proof of concept value, can
be assumed to be equal to infinity. So the only parameter, as in the previous
case, is a.

The dynamics of the network over time t is given by the following equation
[3]:

sr(t + 1) = g(β[hr +
∑

r′
wrr′sr(t)− T ]),

where g(.) is a sigmoid function, sr(t) is the state of the neuron s at position r
and time t, β is the inverse temperature and T is the threshold of the system.
The result must be insensitive to the particular chose of g(.).

Once the network is constructed, we need to choose its initial state. If the a
priori probabilities for all points to be the origin of the rarest block are equal,
one can choose sr(0) = 1, ∀r. Due to the non-linearity, the analysis of the
results is not straightforward. The existence of the attractor is guaranteed by
the symmetrical nature of the weights w, which is a necessary condition for the
existence of an energy function.
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Fig. 5. Comparison between score image (left) and network activity image (right). The
size of the area is 24x24 and the parameter a = 16.

We can further refine the results of the previous section by fixing the global
threshold T in a way to have only some fraction of the excited neurons. Thus
we obtain a bump activity of the network, previously considered in [8,6,7]. A
sample result is shown in Fig.5.

Regarding the time analysis of the procedure, one can see that the execution
times are proportional to the number of the weights w. Having in mind that
actually the connectivity is between the blocks, and that we can use a fraction
of blocks less than 1/N2, the execution time can drop to order inferior to the N4

limit. Thus, the number of steps to achieve the attractor is of the order logN .

3 Discussion and Future Directions

In this paper we present a method to find the most unusual (rare) part in two
and higher dimensional images, when its shape is fixed, but in general arbitrary.
The method is almost independent on the size of the shape in terms of the
execution speed and time. It gives good results on experimental images without
predefined model of the interesting event.

One necessary future development of the algorithm is to achieve practical and
computable criteria of the “rareness” of the block and comparing the results on
large enough database in order to have qualitative measure of the results. The
criterion must be different from Eq. (1), because its direct computing tends to
be very slow and crispy.

Exact calculus of the probabilistic features of the network in the thermody-
namics limit, performed in the sense of probability of finding the outliers, are
also of common interest.

Among the future applications of the present method, one could mention the
achievement of experiments on different type of images and large image databases
and experiments on acceleration of the network due to the special equivalence
class construction.
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Abstract. This paper proposes a statistical approach to labeling images using a
more natural graphical structure than the pixel grid (or some uniform derivation of
it such as square patches of pixels). Typically, low-level vision estimations based
on graphical models work on the regular pixel lattice (with a known clique struc-
ture and neighborhood). We move away from this regular lattice to more mean-
ingful statistics on which the graphical model, specifically the Markov network
is defined. We create the irregular graph based on superpixels, which results in
significantly fewer nodes and more natural neighborhood relationships between
the nodes of the graph. Superpixels are a local, coherent grouping of pixels which
preserves most of the structure necessary for segmentation. Their use reduces the
complexity of the inferences made from the graphs with little or no loss of ac-
curacy. Belief propagation (BP) is then used to efficiently find a local maximum
of the posterior probability for this Markov network. We apply this statistical in-
ference to finding (labeling) documents in a cluttered room (under moderately
different lighting conditions).

1 Introduction

Our goal in this paper is to label (natural) images based on generative models learned
from image data in a specific imaging domain, such as labeling an office scene as docu-
ments or background (see figure 1). It can be argued that object description and recog-
nition are the key goals in perception. Therefore, the labeling problem of inscribing
and affixing tags to objects in images (for identification or description) is at the core of
image analysis. But Duncan et al. [3] describe how a discrete model labeling problem
(where every point has only a constant number of candidate labels) is NP-complete. The
conventional way of solving this discrete labeling in computer vision is by stochastic
optimization such as simulated annealing [6]. These are guaranteed to converge to the
global optimum under some conditions, but are extremely slow to converge.

However, some efficient approximations based on combinatorial methods have been
recently proposed. One such approximation involves viewing the image labeling prob-
lem as computing marginalizations in a probability distribution over a Markov random
field (MRF). Inspired by the successes of MRF graphs in image analysis, and tractable
approximation solutions to inferencing using belief propagation (BP) [10] [9], several
other low level vision problems such as denoising, super-resolution, stereo etc., have

V.E. Brimkov, R.P. Barneva, H.A. Hauptman (Eds.): IWCIA 2008, LNCS 4958, pp. 295–305, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. On the left is a sample of the training data for an office scene with documents, the middle
image is its superpixel representation (using normalized cuts, an over-segmentation of the orig-
inal) and the right image is the manually labeled version of the original showing the documents
as the foreground

been tackled by applying BP over Markov networks [5][15]. BP is an iterative sum-
product algorithm, for computing marginals of functions on a graphical model. Despite
recent advances, inference algorithms based on BP are still often too slow for practical
use [4].

In this paper, we present an algorithmic technique that represents our image data
with a Markov Random Field (MRF) graphical model defined on a more natural node
structure, the superpixels. We infer the labels using belief propagation (BP) but get away
from its drawbacks by substantially reducing the node structure of the graph. Thus, we
reduce the combinatorial search space and improve the algorithmic running time while
preserving the accuracy of the results.

Most stochastic models of images, are defined on the regular pixel grid, which is not a
natural representation of visual scenes but rather an “artifact” of the image digitization
process. We presume that it would be more natural, and more efficient, to work with
perceptually meaningful entities called superpixels, obtained from a low-level grouping
process [8], [16].

The organization of the paper is as follows: in section 2, we give a brief overview
of BP irrespective of the graph structure and describe the process of inferring via mes-
sage updates; in section 3, we describe our implementation of BP on an irregular graph
structure and provide some justification to the use of superpixels; in section 4 we de-
scribe our experiments and provide quantitative and qualitative results and finally in
section 5 we discuss some of the drawbacks of the technique, prescribe some means of
improvement and discuss our plans for future work.

2 Background on Belief Propagation (BP)

A Markov network graphical model is especially useful for low and high level vision
problems [5], [4] because the graphical model can explicitly express relationships be-
tween the nodes (pixels, patches, superpixels etc). We consider the undirected pairwise
MRF graph G = (V, E), V denoting the vertex (or node) set and E, the edge set. Each
node i ∈ V has a set of possible states C and also is affiliated with an observed state ri.
Given an observed state ri, the goal is to infer some information about the states ci ∈ C.
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The edges in the graph indicate statistical dependencies. In our document-labeling prob-
lem, the hidden states C are (1) the documents and (2) the office background.

In general, MRF models of images are defined on the pixel lattice, although this
restriction is not imposed by the definition of MRF. Pairwise-MRF models are well
suited to our labeling problem because they define (1) the relationship between a node’s
states and its observed value and (2) the relationship within a clique (a set of pairwise
adjacent nodes). We assume in here that the energies due to cliques greater than two are
zero.

If these two relationships can be defined statistically as are probabilities, then we can
define a joint probability function over the entire graph as:

p(c, r) =
1
Z

p(c1, c2 · · · cn, r1, · · · rn) (1)

=
1
Z

p(c1)p(r1|c1)p(r2|c2)p(c2|c1) · · · p(rn|cn)p(cn|cn−1) (2)

Z is a normalization constant such that
∑

c1∈C1,··· ,cn∈Cn
p(c1, c2, · · · , cn) = 1. It is

important to mention that the derivations in this section are done over a simplified graph
(the chain) but the solutions generalize sufficiently to more complex graph structures.

If we let ψab(ca, cb) = p(ca)p(cb|ca) and φa(ca, ra) = p(ra|ca) then the marginal
probability at any of the nodes is given by:

p(ci) = 1
Z

∑
c1

∑
c2

· · ·
∑

ci−1

∑
ci+1

· · ·
∑

cn
ψ1,2(c1, c2) (3)

ψ2,3(c2, c3) · · · ψn−1,n(cn−1, cn)
φ1(c1, r1)φ2(c2, r2) · · · φn(cn, rn)

Let f(c2) =
∑

c1

ψ1,2(c1, c2)

f(c3) =
∑

c2

ψ2,3(c2, c3)f(c2)

...

f(cn) =
∑

cn

ψn−1,n(cn−1, cn)f(cn−1)

(4)

The last line in equation (4) shows a recursive definition which we later take advantage
of in our implementation. The equation shows how functions of probabilities are prop-
agated from one node to the next. The “probabilities” are now converted to functionals
(functions of the initial probabilities).

If we replace the functional f(ci) with the message property mij where i is the
node to which the message are propagated and j is the node from which the message
originates, then we can define our marginal probability at a node in terms of message
updates. Also, if we replace our probability at a node p(ci) by the belief at the node
b(ci) (since the computed values are no longer strictly probability distributions), then
we can rewrite equation (4) as,

bi(ci) = φi(ci, ri)
∏

j∈N (i)

mij(ci) (5)
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where N (i) is the neighborhood of i. Equation (5) above shows how the derived func-
tions of probabilities (or messages) are propagated along a simplified graph. Under the
assumption that our solution so far generalizes to a more complex graph structure, we
can now extend our derivation to the joint probability on an MRF graph given as:

p(c) =
1
Z

∏

i,j

ψ(ci, cj)
∏

k

φ(ck, rk) (6)

The joint probability on the MRF graph is described in terms of two compatibility
functions, (1) between the states and observed nodes and (2) between neighboring
nodes.

We illustrate the message propagation process to node 2 in a five-node graph in
figure(2). In this simple example, the belief at a node i can now be given as:

bi(ci) =
∑

cj∈Cj ,1≤j≤5,j �=i

p(c1, · · · , c5); (7)

= φi(ci, ri)
∏

j∈N (i)

mji(ci)

mji(ci) =
∑

cj∈Cj

φj(cj , rj)ψji(cj , ci)
∏

k∈N (j)j �=i

mkj(cj)

Unfortunately, the complexity of general belief propagation is exponential in the size
of the largest clique. In many computer vision problems, belief propagation is pro-
hibitively slow. The high-dimensional summation in equation (3) has a complexity of
O(nMk), where M is the number of possible labels for each variable, k is the max-
imum clique size in the graph and n is the number of nodes in the graph. By using
the message updates, the complexity of the inference (for a non-loopy graph as de-
rived above) is reduced to O(nkM2). By extending this derivation to a more complex
graph structure, the convergence property of the inference algorithm is removed and it
is no longer guaranteed to converge. But in practice the algorithm consistently gives
a good solution. Also, by significantly reducing n, we further reduce the algorithmic
time.

Fig. 2. An example of computing the messages for node 2, involving only φ2, ψ2,1, ψ2,3 and any
messages to node 2 from its neighbors’ neighbors
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3 Labeling Images Using BP Inference

When doing labeling, the images are first abstracted into a superpixel representation
(described in more detail in section (3.1)). The Markov network is defined on this ir-
regular graph, and the compatibility functions are learned from labeled training data
(section 3.2). The BP is used to infer the labels on the image.

3.1 The Superpixel Representation

First, we need to chose a representation for the image and scene variables. The image
and scenes are arrays of single-valued superpixels. A superpixel is a homogenous seg-
ment obtained from a low-level grouping of the underlying pixels. Although irregular
when compared to the pixel-grid, we choose the superpixel grid because we believe
that it representationally more efficient: i.e. pairwise constraints exist between entire
segments, while they only exist for adjacent pixels on the pixel-grid. For a local model
such as the MRF model, this property is very appealing in that we can model much
longer-range interactions between superpixels segments. The use of superpixels is also
computationally more efficient because it reduces the combinatorial complexity of im-
ages from hundreds of thousands of pixels to only a few hundred superpixels.

There are many different algorithms that generate superpixels including the segre-
gated weighted algorithm (SWA) [12],[2], normalized cuts [13], constrained Delaunay
triangulation [11] etc. It is very important to use near-complete superpixel maps to
ensure that the original structures in the images are conserved. Therefore, we use the
region segmentation algorithm normalized cuts [13], which was emperically validated
and presented in [8]. Figure (3) shows an example of a natural image with its super-
pixel representation. For building superpixels using normalized cuts, the criterion for
partitioning the graph are (1) to minimize the sum of weights of connections across the
groups and (2) to maximize the sum of weights of connections within the groups. For
completeness, we now give a brief overview of the normalized cuts process.

We begin by defining a similarity matrix as S = [Sij ] over an image I(i, j). A
similarity matrix is a matrix of scores which express the similarity between any two
points in an image. If we define a graph G(V, E) where the node set is defined as the
relationship ij between nodes, and all edges e ∈ E have equal weight, we can define
the degree of a node as di =

∑
j Sij and the volume of a set in the graph as vol(A) =

∑
i∈A di, A ⊆ V . The cuts in the graph are therefore cut(A, Ā) =

∑
i ∈ A, j ∈ ĀSij .

Given these definitions, normalized cuts are described as the solution to:

Ncut = cut(A, B)
(

1
vol(A)

+
1

vol(B)

)

(8)

Our implementation of superpixel generation implements an approximate solution
using spectral clustering methods. The resulting superpixel representation is an over-
segmentation of the original image. We define the Markov network over this represen-
tation.
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Fig. 3. On the left is an example of a natural image, the middle image is the superpixel repre-
sentation (using normalized cuts, an over-segmentation of the original) and the right image the
superimposition of the two

3.2 Learning the Compatibility Functions

The model we assume for the document labeling images is generated from the training
images. The joint probability distribution is modeled using the image data and their cor-
responding labels. The joint probability is expressed in terms of the two compatibility
functions defined in equation(6).

If we let ri represent a superpixel segment in the training image and ci, its corre-
sponding label. The first compatibility function φ(ci, ri) can be computed by learning a
mixture of Gaussian models. The resulting Gaussian distributions will represent either
the document class or the background class. So although we have two real-life classes
(document and background), the number of states to be input to the BP problem will
have increased based on the output of the Gaussian Mixture Model (GMM), i.e. each
component of the GMM represents a distinct label.

The second compatibility function ψ(ci, cj) relates the superpixels to each other.
We use the simplest interacting Pott’s model where the function takes one of 2 values
−1, +1 and the interactions exists only for amongst neighbors with the same labels.
Our compatibility function between superpixels is therefore given as:

ψ(ci, cj) :=
{

+1 if ci and cj have the same initial label values,
−1 otherwise

(9)

So given a new image of a cluttered room, we can extract the documents in the image
by using the steps given in section (3.3). The distribution of the superpixels ri ∈ R
given the latent variables ci ∈ C can therefore be modeled graphically as:

P (R, C) ∝
∏

i

φ(ri, ci)
∏

(cj ,ck)

ψ(cj , ck) (10)

Equation (10) can also be viewed as the pairwise-MRF graphical representation of our
labeling problem, which can be solved using BP with the two parts of equation (7).

3.3 Putting All Together...

The general strategy for designing the label system can therefore be described as:

1. Use the training data to learn the latent parameters of the system. The number
of resulting latent parameter sets will give the number of states required for the
inference problem.
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2. Using the number of states obtained in the previous steps, design compatibility
functions such that eventually, only a single state can be allocated to each super-
pixel.

3. For the latent variable ci associated with every superpixel i, use the BP algorithm
to choose its best state.

4. If the state values correspond to labeling classes (as in the case of our document
labeling system), the selected state variables are converted to their associated class
labels

4 Experiments, Results and Discussion

The first round of experiments consisted of testing the BP labeling algorithm on synthet-
ically generated image data, whose values were samples drawn from a known distribu-
tion. We first generated synthetic scenes by drawing samples from Gaussian distribution
functions, and then added noise to the resulting images. These two datasets (clean and
noisy images) represented our observations in a controlled setting. To add X% noise, we
randomly selected unique X% of the pixels in the original image and the pixel values
were replaced by a random number between 0 and 255;

The scene (or hidden parameters) were represented by the parameters of our gener-
ating distributions. We modeled the relationships between the scenes and observations
with a pairwise-Markov network and used belief propagation (BP) to find the local
maximum of the posterior probability for the original scenes.

Figure (4) shows the results obtained from running the process on the synthetic data.
We also present a graph showing the sum-of squared-differences (SSD) between the
ground-truth data and varying levels of noise in figure (5).

We then extended this learning based scene-recovery approach to finding documents
in a cluttered room (under moderately different lighting conditions). Documents were
labeled in images of a cluttered room and used in training to obtain the prior and con-
ditional probability density functions. The labeled images were treated as scenes and
the goal was to infer these scenes given a new image from the same imaging domain
(pictures of offices) but not from the training set. For inferring scenes from given ob-
servations, the computed distributions were used as compatibility functions in the BP
message update process.

We learned our distributions from the training data using an EM-GMM algorithm
(Expectation Maximization for Gaussian Mixture Models) on 50 office images. The
training images consisted of images with different documents in a cluttered background,
all taken in one office. The document data was modeled with a mixture of three Gaus-
sian distributions while the background data was modeled with two Gaussian distribu-
tions. The resulting parameters (mean μi, variance σi and prior probability pi) from
training are:

– class 1: μ1 = 6.01; σ1 = 9.93; p1 = 0.1689
– class 2: μ2 = 86.19; σ2 = 147.79; p2 = 0.8311
– class 3: μ3 = 119.44; σ3 = 2510.6; p3 = 0.5105
– class 4: μ4 = 212.05; σ4 = 488.21; p4 = 0.2203
– class 5: μ5 = 190.98; σ5 = 2017; p5 = 0.2693
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Fig. 4. Top row: the left column shows an original synthetic image created from samples from
Gaussian distributions, the middle column is its near-correct superpixel representation and the
right column shows the resulting labeled image. Bottom row: the left column shows a noisy
version of the synthetic image, the middle column is its superpixel representation and the right
column also shows the resulting labeled image.

Fig. 5. Quantitative display of how the error increases exponentially with increasing noise

The resulting five classes were then treated as the states that any variable ci ∈ C in
the MRF graph could take. Classes 1 and 2 correspond to the background while classes
3,4 and 5 are the documents. Unfortunately, because the models were trained separately,
the prior probabilities are not reflective of the occurrences in the entire data, only in the
background/document data alone.
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Fig. 6. The top row shows sample of training data and the corresponding labeled image; the
bottom row shows a testing image (taken at a different time, in a different office. The output of
the detection is shown.

Fig. 7. The distributions of the foreground document and cluttered background classes

For testing, a new image was taken in a completely different office under moderately
different lighting conditions and the class labels were extracted. The pictorial results of
labeling the real-life rooms with documents are shown in figure (6).

We observed that even with applying relatively weak models (the synthetic images are
no longer strongly coupled to the generating distribution), we were able to successfully
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recover a labeled image for both synthetic and real-life data. A related drawback we faced
was the simplicity of our representation. We used grayscale values as the only statistic
in our document-finding system and this (as seen in figure (6)b), introduces artifacts into
our final labeling solution. Superpixels whose intensity values are close to those of the
trained documents can be mis-labeled.

Also, we observed that the use of superpixels reduced the number of nodes signifi-
cantly, thus reducing the computational time. Also, the segmentation results of our low
noise synthetic images and the real-life data were promising with superpixels. A draw-
back though is the limitation imposed by the superpixel representation. Although we
used a well tested and efficient superpixel implementation, we found that as the noise
levels increased in the images, the superpixels became more inaccurate and the errors
obtained in the representation were propagated into the system. Also, due to the loops in
the graph, it does not converge if run long enough, but we can still sufficiently recover
the true solution from the graphical structure.

5 Conclusion

In this paper, we have proposed a way of labeling irregular graphs generated by an
oversegmentation of an image, using BP inferences on MRF graphs. Because a common
limitation of graph models in low level image processing is often due to intractable node
size on the graph, we have reduced the computational intensity of the graph model by
introducing the use of superpixels, without any loss of generality on the definition of
the graph. We reduced the number of node variables from orders of tens of thousands
of pixels to about a hundred superpixels.

Furthermore, we define compatibility functions for inference based on learning the
statistical distributions of the real-life data.

In the future, we intend to base our statistics on more definitive features of the im-
ages (other than simply grayscale values) to model the real-life document and back-
ground data.. These could include textures at different scales, and other scale-invariant
measurements. We also plan to investigate the use of stronger inference methods by
relaxing the assumption that the cliques in our MRF graphs are only of size 2.
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Abstract. Image Registration is central to different applications such
as medical analysis, biomedical systems, image guidance, etc. In this pa-
per we propose a new algorithm for multi-modal image registration. A
Bayesian formulation is presented in which a likelihood term is defined
using an observation model based on linear intensity transformation func-
tions. The coefficients of these transformations are represented as prior
information by means of Markov random fields. This probabilistic ap-
proach allows one to find optimal estimators by minimizing an energy
function in terms of both the parameters that control the affine trans-
formation of one of the images and the coefficient fields of the intensity
transformations for each pixel.

Keywords: Image Registration, Markov Random Fields, Bayesian
Estimation, Intensity Transformation Function.

1 Introduction

Image registration is the alignment of images that may come from the same
or different source. This task is very important to many applications involving
image processing or analysis such as medical analysis, biomedical systems, image
guidance, depth estimation, and optical flow. A special kind of registrations
is called Multimodal Image Registration, in which two o more images coming
from different sources are aligned; this process is very useful in computer aided
visualization in the medical field.

In the literature, there are basically two classes of methods to register mul-
timodal images: those based on features such as edge locations, landmarks or
surfaces [6][7][11], and those based on intensity [1][19][4][16]. Within the inten-
sity methods there are two popular ones. Partitioned Intensity Uniformly (PIU)
[19][5], proposed by Woods et al, is one of them. In this method it is assumed
that uniform regions in one of the images correspond to regions, also uniform,
in the other one. To achieve the registration, a corresponding measure is estab-
lished based on the statistical characteristics of both images. The goal of this
method is to use this measure to minimize the variance of intensity ratios. The
other method that has shown good results is the registration based on mutual
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information (MI), proposed by Viola et al [18]. In this method, statistical depen-
dencies between images are compared, establishing a metric based on the entropy
of each image and the join entropy. Even though the method is theoretically ro-
bust, it is complicated to implement and requires vast computational resources.
Another drawback of MI is that it completely ignores spatial information such
as edges or homogenous regions.

A method related to the work proposed in this paper is presented in [10].
It focuses only on elastic registration of multimodal images; it uses an itera-
tive scheme that iterates between finding the coefficients of polynomial intensity
transformations and registration using the demons method [17]. This method
makes the assumption that there are at most two functional dependencies be-
tween intensities. This restriction limits its applications since there are cases, as
those found in medical imaging, where inhomogeneity and noise are presented
in both images to register.

In this work, we present a more general registration method, in which a prob-
abilistic model permits the characterization of the image registration by means
of linear intensity transformation functions. Rigourously based on Bayesian esti-
mation, the main goal of this method is to establish the parameters of the affine
transformation, and at the same time, determine in a probabilistic framework
the coefficient values of these linear functions for each pixel to achieve the image
registration. These transformations have the purpose to estimate the adequate
intensity changes that match the intensity values between the images. In this ap-
proach, the coefficients of the linear intensity transformations (labeled MRCF)
are represented as Markov Random Fields (MRF)[2], giving in this way the prior
information about the homogeneity of the intensity changes.

The paper is organized as follows: in Section 2, we give an introduction to
MRF and present the Bayesian framework of image registration using affine
transformation and MRCF; in Section 3, we describe some experiments and
results; finally in Section 4, some conclusions are presented.

2 Bayesian Framework for Multimodal Image
Registration

2.1 Markov Random Fields

In this subsection, we present the basic definition of Markov Random Fields, for
more detail refer to [2][12][8]. Let L be the discrete pixel lattice where 2D images
of size n×m are observed:

L = {(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ m}. (1)

To simplify the notation, the pixels in a n×m image can be conveniently re-index
by a number r taking values in {1, 2, ..., n×m}. The sites in L are related to one
another via a neighborhood system. A neighborhood system for L is given by

N = {Nr|∀r ∈ L}, (2)
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where Nr are the sites neighboring r. The neighborhood relationship has the
following properties:

– a site is not neighboring to itself: r /∈ Nr;
– the neighboring relationship is mutual: r ∈ Nr′ ⇐⇒ r′ ∈ Nr.

We can define a graph (L, N), where L contains the nodes and N determines
the link between the nodes according to a neighborhood system. A clique C for
(L, N) is a subset of sites in L such that for all r, s ∈ C such that r �= s, we
have that r ∈ Ns and s ∈ Nr. In a first order neighborhood system (the four
nearest sites to r), cliques may be composed of either single sites c = {r}, or a
pair of neighboring sites c = {r, r′}, thus the collections of single-cliques C1 and
pair-cliques C2 are defined as

C1 = {{r}|r ∈ L},
C2 = {{r, s}|r ∈ Ns, s ∈ Nr}.

Let F = {F1, ..., Fn×m} be a family of random variables defined on L, where
a realization of Fr can take a value fr in Ω; we denote a realization of a joint
event as F = f . F is said to be a Markov random field on L with respect to a
neighborhood system N if the following conditions are satisfied:

– p(f) > 0, ∀f ∈ F,
– p(fr|fL−{r}) = p(fr|fNr).

The Hammersley and Clifford theorem [2] establishes that an MRF has an equiv-
alence with a Gibbs distribution, which has the following form

p(f) =
1

Zf
exp{−

∑

C

VC(f)}, (3)

where Zf is a normalizing constant, the sum in the exponential ranges over
the cliques of the given neighborhood system on L, and {VC} are the potential
functions, each one depending on the values of f at the sites that belong to
the clique C. These potential functions, together with the neighborhood system,
control the appearance of the sample field f .

2.2 Bayesian Estimation

To describe the probabilistic framework for multimodal image registration, we
assume first that the observation model in each pixel is given by

I2(T (r)) = g(I1(r)) + η(r), (4)

where I1, I2 are the images to register; T is the affine transformation that aligns
the images I1, I2; and η(r) ∼ N(0, σ2). g(I1(r)) is the intensity transformation
function which may be, in general, very complex such as logarithmic, gamma,
contrast-stretching, inverse, polynomial, or thresholding transformations, (see
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more details in [9]). In particular, we model this transformation with a locally
linear function given by

g(I1(r)) = K1(r)I1(r) + K2(r), (5)

where K1 and K2 are Markov random coefficient fields (MRCF) that describe
the intensity transformation at each pixel r. Given the observation model (4)
and the linear functions (5), one can estimate their parameters using Bayesian
estimation theory, following the steps [13]:

1. Find the likelihood of the observation p(I1, I2|K1, K2, T ).
2. Using the prior distributions p(K1, K2, T ), find the posterior distribution

p(K1, K2, T |I1, I2).
3. Define an appropriate cost function C(K̂1, K̂2, T̂ , K1, K2, T ), that assigns a

cost to estimators K̂1, K̂2, T̂ , given that the true values are K1, K2, T .
4. Find the optimal estimators K∗

1 , K∗
2 , T ∗ by minimizing

Q(K̂1, K̂2, T̂ ) = E[C(K̂1, K̂2, T̂ , K1, K2, T )|I1, I2). (6)

Now, we proceed to analyze each step in detail.
Assuming that η(r) (normal) is known and iid, the likelihood function can be

written as
p(I1, I2|K1, K2, T ) =

1
ZL

exp[−
∑

r∈L

VT (r)], (7)

where

VT (r) =
(I2(T (r)) −K1(r)I1(r)−K2(r))2

2σ2
. (8)

In this model, K1, K2, and T are assumed independent; hence, one can express
p(K1, K2, T ) as a product of independent probabilities. Now, the probability of T
is considered constant, and K1, K2 are MRF, resulting in the prior distribution:

p(K1, K2, T ) = p(K1)p(K2)p(T )
= 1

ZP
exp[−∑

C VC(K1)−
∑

C VC(K2) + log p(T )] . (9)

Using (8), (9), and the Bayes rule, one finds the posterior distribution as:

p(K1, K2, T |I1, I2) =
1
Z

exp[−U(K1, K2, T )], (10)

where Z is a normalizing constant composed by 1/ZL and 1/ZP , and

U(K1, K2, T ) =
∑

r∈L

VT (r) +
∑

C

VC(K1) +
∑

C

VC(K2)− κ, (11)

where VT is given by (8), and κ is a noninformative constant; the potential
function VC considers only cliques of size 2, that is, nearest-pair sites < r, s >
which are one unit apart:

VC(K(r), K(s)) = λr,s(K(r) −K(s))2, (12)
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where λr,s is a positive regularization parameter that may depend on the sites
< r, s >; however, we used the same λ for all < r, s > in our implementation.

Let θ = [K1, K2, T ] denote the estimator vector, and define the cost function
(1− δ(x)), where

δ(x) =
{

1,if x = 0
0, otherwise. (13)

To find the optimal estimator θ∗, using this cost function, we see that

Q(θ̂) =
∫

θ∈Θ

(1− δ(θ̂ − θ))p(θ|I1, I2)dθ

=
∫

θ∈Θ

p(θ|I1, I2)dθ −
∫

θ∈Θ

δ(θ̂ − θ)p(θ|I1, I2)dθ

= 1−
∫

θ∈Θ

δ(θ̂ − θ)p(θ|I1, I2)dθ. (14)

Therefore, to minimize (14), we need to find θ̂ that maximizes p(θ̂|I1, I2), which
is equivalent to finding

K∗
1 , K∗

2 , T ∗ = arg min
K1,K2,T

U(K1, K2, T ), (15)

which is called maximum a posteriori (MAP) estimator.

2.3 Minimization Algorithm

The minimization of (15) may be achieved using different unconstrained opti-
mization algorithms (see [15]). However, in this paper, we have used an efficient
Newtonian gradient descent algorithm (NGD) [14]. This method is based on the
idea of moving, in each iteration, in a direction d such that ∇U · d < 0 (i.e.,
a descent direction). The convergence may be accelerated if one considers each
element of K1(r), K2(r), and each element of the affine transformation T as the
position of a particle of unit mass, subject to a force equal to −∂U/∂K1(r) (re-
spectively, −∂U/∂K2(r), −∂U/∂T ). The equation of motion of these particles
may be obtained from Newton’s second law. The discretization of these equations
gives way to an iterative gradient descent algorithm with inertia:

K
(t+h)
1 (r) =

2
αh + 1

K
(t)
1 (r) +

αh− 1
αh + 1

K
(t−h)
1 (r)

− h2

αh + 1
∇K1(r)U

(t) (16)

K
(t+h)
2 (r) =

2
αh + 1

K
(t)
2 (r) +

αh− 1
αh + 1

K
(t−h)
2 (r)

− h2

αh + 1
∇K2(r)U

(t) (17)

T (t+h) =
2

αh + 1
T (t) +

αh− 1
αh + 1

T (t−h)

− h2

αh + 1
∇T U (t), (18)
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where α is a friction coefficient, U (t) = U(K(t)
1 (r), K(t)

2 (r), T (t)), and h is the step
size. This method differs from the typical gradient descent in that the friction
coefficient α allows the algorithm to avoid, in many cases, becoming trapped
in local minima. Notice that if α = 1/h the NGD is a typical gradient descent
method.

3 Results and Discussion

In the following section, we present some experiments involving different kind of
images to test the performance of the algorithm. First, we show the ability of the
MRCF to compute the intensity changes required to achieve the image registra-
tion between multimodal images and its robustness to noise and inhomogeneities.
Second, we compare our algorithm against the method proposed by Viola et al.
[18]. All these experiments were performed on a PC-based workstation running
at 3.0 GHz.

3.1 Experiments

In order to test the ability of the proposed algorithm to find the coefficients of
the linear intensity transformation functions, we built a one-dimensional signal
of 126 samples. Fig. 1a shows the signal I1(thicker line), which is the negative
of I2 (thinner line), and shifted five samples to the left of I2 . In the plot in
Fig. 1b, we can see the thicker line composed by the intensity transformation
K1(r)I1(r) + K2(r), and I2(r − d), where d is the displacement found by the
proposed algorithm; to appreciate the matching between the signals, the thicker
line is plotted few values below I2. In fact, the signal I1 was built by setting
I1(r) = −I2(r+d); one can observe in Figures 1c and 1d how the MRCF K1, K2

approach this transformation.
In order to test the robustness of the algorithm to noise, the following exper-

iment consisted in the registration of the images in Fig. 2a and Fig. 2b; this last
one was built artificially. We added normal random values to the image in Fig.
2b. The true relative mean error (TRME) between the true parameter vector
θ∗ = [0.2094, 2.0,−36,−18] (corresponding to the angle, scale, and displace-
ments in (x, y)) and the vector values θi obtained by the algorithm for different
noise standard deviations σ = {0, 2, 4, 6, 8, 10, 12, 14, 16} is ploted in Fig. 3. This
error has the advantage of independently taking into account the unit scales of
the quantities to evaluate, and it is computed for each θi as follows

TRMEi =

∑4
k=1 | θ

∗
i (k)−θi(k)

θ∗
i (k) |

4
. (19)

In all the experiments, we used the same set of values for the parameters of the
algorithm; in all tests, the error was less than 3.0%.

Wealso applied this registrationapproach todifferentkinds ofbrain images com-
ing from different sources or processes. The first experiment consisted in register-
ing a Magnetic Resonance (MR) image in Fig. 4a and the Computed Tomography
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Fig. 1. a) Original signals I1, I2; b) aligned signals; c) K1 field; d) K2 field

Fig. 2. a), b) images I1, I2 to align; c) transformed image I1 ; d) difference between
image transformed I1 and registered I2

0 2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

Er
ro

r

σ

Fig. 3. True relative mean error

(CT) image in Fig. 4b. We can see in Fig. 4c the transformation of the MR-image
using the MRCF to match the image in Fig. 4b that together with the estimated
affine-parameters produce the superimposed registration shown in Fig. 4d.
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Fig. 4. a) MR-image, b) CT-image, c) transformed MR-image, d) superimposed regis-
tration

Fig. 5. a) T1-image, b) T2-image

Fig. 6. a) Histogram of 0 < K1 < 1; quantized values of white and gray natter: b)
0.2 ≤ K1 < 0.6, c) 0.6 ≤ K1 < 1

In the next experiment, we examine the coefficient values of the fields K1 and
K2 obtained by registering a synthetic magnetic resonance image spin-lattice re-
laxation time (T1), and spin-spin relaxation time (T2) obtained from the Brain-
web Database [3]; these are shown in Fig. 5. The T1-image was produced with
0% of Gaussian noise and 0% intensity shading (inhomogeneity), while the T2-
image with 0% of noise and 40% of inhomogeneity. A histogram of the values of
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0 < K1(r) < 1 is plotted in Fig. 6a. These values correspond to a region of the
T1-image where it is necessary to reduce the intensity levels in order to match the
intensity values of the same regions in the T2-image. We can see that there are
two modes localized approximately at 0.4 and 0.8, corresponding respectively to
the white and gray matter. These distributions show that it is necessary to have
a set of coefficient values (i.e., different intensity transformation functions) to
adjust the intensities of T1 to approximate those of T2 in these regions, mainly
due to their inhomogeneity. This is more evident in Figures 6b and 6c where we
separated the white and gray matter using the K1-interval values [0.2, 0.6) and
[0.6, 1), and thresholded in intervals of 0.1.

3.2 Comparisons

Here we present some comparisons with one of the most popular and referenced
algorithms in the literature; this method was presented in [18] and it is based
on Mutual Information theory. To do this, we obtained T1 and T2 images from
the Brainweb and made several experiments. The first one consists in registering
a T1-image with 3% of noise and 20% of inhomogeneity versus a set of T2-
images (similar to that shown in Fig. 5) having different level of noise and 40%
of inhomogeneity; the set of images were previously transformed using a known
affine transformation. In both algorithms, the transformation T was initialized
with the identity. Due to the stochastic nature of the MI method, it required
to let the program run for 300 seconds ten times for each image pair. However,
since MRCF is deterministic, we let the program run 300 seconds once for each
image pair. The results are plotted on Figure 7. Notice that MI does not always
converge to an acceptable solution in most cases (large variances), while MRCF
reached a TRME below 1% in all cases.

Fig. 7. Boxplot of results obtained by MI and MRCF
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Fig. 8. a) T1-image, b) T2-image, c) transformed T1-image, d) superimposed registra-
tion

For the final comparison, we choose the hardest case in which a T1-image with
9% of noise and 40% of inhomogeneity was registered with a T2-images with also
9% of noise and 40% of inhomogeneity. The results obtained by MRCF are shown
in Fig. 8. The TRME of MRCF was of 1.1865%, while for MI was 71.0916%,
both computed in 600 seconds.

4 Conclusions

This work presents an algorithm rigourously based on Bayesian estimation in
which two Markov Random Fields (K1, K2) represent the coefficients of linear
intensity transfer functions applied to each pixel. These functions are included
in a very simple observation model (4) that allows one to estimate with high
precision the necessary intensity changes and the parameter values of the affine
transformation to match the images to register. Another important characteristic
of this energy function is that it includes spatial coherence as priori knowledge by
means of the MRCF (see equations (11), (12)). Although the resulting posteriori
energy function (15) is highly non-linear with respect to the affine transformation
parameters, and quadratic with respect to the MRF’s K1, K2, it was successfully
minimized using an efficient, simple, and easy to implement Newtonian gradient
descent algorithm.

The paper also presents examples that illustrate the generality of the algo-
rithm to estimate the coefficient values K1 and K2 of the local linear functions
to approach the intensity transformation needed to achieve the image registra-
tion. We showed the performance and stability of the algorithm to get high
precision registrations in cases in which radical intensity changes exist, as those
shown in Figures 1, 4, 5 and 8. Preliminary results show that the fields K1 and
K2 may also yield discriminatory information about the different regions in the
images, which may be useful for a posterior segmentation process. Finally, we
demonstrate the robustness of the proposed algorithm to noise and intensity
inhomogeneities, outperforming the MI-algorithm as it was described in [18].

Perspectives for future research include: (1) a generalization of the proposed
methodology for the registration of 3D brain images, (2) the addition of a
segmentation stage that takes advantage of the MRCF K1 and K2, and (3)
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the application of MRCF to other problems in computer vision and image
processing.
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C/Hornos Caleros 50, 05003-Ávila, Spain
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Abstract. In this paper a new secret sharing scheme for digital images is
introduced. It is based on the use of very simple two-dimensional linear
cellular automata and their algebraic properties. It is shown that the
scheme presented is ideal and perfect.

1 Introduction

The advent of personal computers and the Internet has made it possible for any-
one to distribute worldwide digital information easily and economically. In this
new environment, there are several security problems associated with the pro-
cessing and transmission of digital images over an open network: It is necessary
to assure the confidentiality, the integrity and the authenticity of the digital
image transmitted. To meet these challenges, a wide variety of cryptographic
protocols have appeared in the scientific literature.

Secret sharing schemes are multi-party cryptographic protocols originally re-
lated to key establishment. Specifically, they are procedures that allow one to
share a secret among a set of participants such that only qualified subsets of these
participants (called access structure) can recover the original secret. Moreover,
no information about it can be obtained when non-qualified subsets of partici-
pants try to recover the secret. The original motivation for secret sharing was to
safeguard cryptographic keys from loss. Currently, they have many applications
in different areas such as access control, opening a safety deposit box, etc. The
basic example of secret sharing schemes are the (m, n)-threshold schemes, where
m and n are integer numbers such that 1 ≤ m ≤ n. Those are methods by which
a third trusted party (called the dealer) computes n secret shares (or shadows)
from an initial secret S and securely distributes them among the n participants.
Only subsets of m or more of these participants who pool their shares may easily
recover the original secret, but any group knowing only m − 1 or fewer shares
are unable to recover the secret. Of special interest are (2, n)-threshold schemes.

A secret sharing scheme is said to be perfect if the shares corresponding to each
unauthorized subset of participants provide absolutely no information about the
secret S. Moreover, when the sizes of the secret and the shares are equal, the
secret sharing scheme is called ideal.
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These schemes were introduced independently by Shamir (see Ref. [14]) and
Bakley (see Ref. [2]) in 1979 and they are based on the use of Lagrange interpo-
lation polynomial and the intersection of affine hyperplanes, respectively. Since
then several proposals have been appeared in the literature based on different
mathematical primitives: matrix theory, prime numbers, etc. (see, for example
[12]) Those protocols are specially designed for digital data instead of digital im-
ages. Due to the main characteristic of digital images (they have a large amount
of datum and the difference between two neighboring datum is very small), it
is very difficult to apply directly traditional secret sharing schemes to digital
images.

The first proposal to share digital images was due to Naor and Shamir (see
[10]) and it is called Visual Cryptography. It is based on visual threshold schemes
k of n, i.e. the secret image is divided in n shares such that each of them is pho-
tocopied in a transparency and then, the original image is recovered by super-
imposing any k transparencies but no less. In the last years several construction
methods based on Visual Cryptography have been proposed (see, for example,
[5,6,9,15,18,23]). Besides the Visual Cryptography, another protocols to share
digital images have been designed based on vector quantization ([4]), Shamir’s
ideas ([16,20,22]), Sharing circle ([7,13]) etc.

The main goal of this work is to propose a novel secret sharing scheme based
on the use of a particular type of two-dimensional discrete dynamical system
called linear cellular automata. Specifically, our scheme is a (2, n) secret sharing
scheme whose main advantages are: (1) There is no data expansion; (2) There
is no loss of resolution in the recovered image; (3) It is secure against the most
important cryptanalytic attacks; (4) The computational complexity is low since
the rules governing the cellular automata used involves only XOR operations.
The first proposal based on cellular automata to share a secret was introduced
in [1]. This scheme is a degenerate secret sharing scheme whose computational
complexity is higher than the algorithm proposed in this paper. Moreover, the
access structure given by proposal in [1] is more restricted.

The rest of the paper is organized as follows: In section 2 the basic theory
about two-dimensional linear cellular automata is introduced; the secret sharing
scheme is presented in section 3; in section 4, the security analysis of the protocol
is shown; the generalization of the protocol to obtain a different access structure
is presented in section 5 and finally, the conclusions and further work are shown
in section 6.

2 Two-Dimensional Linear Cellular Automata

Two-dimensional linear cellular automata (LCA) are finite state machines
formed by a collection of r × c memory units called cells which are uniformly
arranged into a rectangular lattice. At each time step, they are endowed with a
state from the state set given by the finite field F2 = {0, 1} (see, for example,
[17,19,21]). The state of a particular cell is updated synchronously according to
a specified linear deterministic function, whose variables are the states of the
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neighbor cells at the previous time step. The set of all neighbors is called the
neighborhood and usually Moore neighborhoods (formed by the main cell and
its eight nearest cells around it) are considered. As a consequence, the local
transition function is as follows:
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where st
i,j stands for the state of the cell (i, j) at time t, and ak ∈ F2, 0 ≤ k ≤ 8.

Note that there are 29 = 512 possible LCA.
To assure a well-defined evolution of the LCA, it is necessary to establish

some type of boundary conditions. In this work we will consider null boundary
conditions: st

i,j = 0 if and only if i < 1 or i > r or j < 1 or j > c.
The configuration of the LCA at a time step t is the matrix Ct =

(
st

ij

)
, where

1 ≤ i ≤ r, 1 ≤ j ≤ c, which is formed by all the states of the cells of the LCA
at time t. The transformation Φ which yields the configuration at the next time
step during the evolution of the LCA is called the global transition function,
that is: Ct+1 = Φ (Ct).

Our work deals with those LCA with the following local transition functions:
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We can interpret them in terms of Linear Algebra (see Ref. [3]): Their evolutions
are given by the matrix expression: F t+1

i = M ·F t
i (mod 2), where F t

i is the i-th
row of Ct and M is called the transition matrix. Its explicit expression is:
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with α = 0 for the local transition function (2) and α = 1 for (3). Moreover, the
LCA with local rule (2) is non-reversible iff k is even, whereas the LCA given
by (3) is non-reversible iff k ≡ 2 (mod 3) (see Ref. [11]).

A simple computation shows that Φ0 + Φ1 = Id (mod 2), where Φ0 and Φ1

are the global transition functions of LCA with local transition rules (2) and (3)
respectively. Moreover, the following result holds:

Theorem 1. Φt
0 + Φt

1 = Id (mod 2) if and only if t = 2m, with m ∈ Z
+.
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Proof. Let M0 and M1 be the characteristic matrices of LCA given by (2) and
(3), respectively. Then:

Id ≡ (M0 + M1)
t ≡M t
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1 (mod 2) , (5)

and we conclude.

Note that, in general, the evolution of a LCA considers that the configuration
at time t + 1 of the LCA depends only on its configuration at the previous
time step t, that is, Ct+1 = Φ (Ct). This is the standard paradigm for the
evolution of cellular automata; nevertheless, one can also assume that Ct+1 not
only depends on Ct, but also on the configurations at the previous time step:
Ct+1 = Ψ

(
Ct, Ct−1

)
. This new kind of LCA is called second order memory

LCA (MLCA for short). Specifically, this work deals with MLCA whose local
transition function is of the following form:
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where f is the local linear transition function defined in (1). This cellular au-
tomata was introduced by Fredkin (see [8]) and it is reversible, that is, the
evolution backwards is possible by means of the inverse cellular automata with
local transition function:
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3 The Protocol to Share Digital Images

In this section we will describe the protocol to share a secret digital image I
among a set of n participants (n even): P 1

1 , P 2
1 , . . . , P 1

n/2, P
2
n/2. Specifically, it is

a (2, n)-threshold scheme, and it consists of three phases: The setup and sharing
phases, which are carried out by the dealer, and the recovery phase, which is
carried out by the participants.

3.1 The Setup Phase

In this phase the dealer chooses the cellular automata and the parameters that
will be used during the protocol. In this case three cellular automata are consid-
ered: two LCA and one MLCA. They are defined by the following local transition
functions:
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st+1
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Note that these functions only involve XOR operations. Also, the dealer ran-
domly chooses n/2 positive integer numbers 1 < m1 < m2 < . . . < mn/2.

Moreover, let I be the secret digital image which is defined by r×c pixels and
a palette of 2u colors (u = 1 for black and white images, u = 8 for gray-level
images, and u = 24 for full color images). It can be easily converted into a binary
matrix JI of order r × u · c as follows: Set KI the matrix of order r × c whose
(i, j)-th coefficient stands for the color code of the (i, j) pixel of the image; then,
JI is obtained from KI by simply considering the binary representation of each
coefficient. In this way a digital image can be represented as a configuration of
a cellular automata with state set F2.

3.2 The Sharing Phase

There are three steps in this phase:

– The dealer divides the image I into two subimages of the same size: I1

and I2, defined by r/2 × c pixels. If r is odd, then a new row of random
pixels can be added to the end of the image I to obtain a new image, which
can be also called I, with an even number of rows. Let JI1 and JI2 be the
binary matrices associated to these subimages, then the dealer computes the
following configurations using the MLCA defined by (8):

C0 = JI1 , C
1 = JI2 , C

t = Ψ
(
Ct−1, Ct−2

)
, 2 ≤ t ≤ N, (11)

where Ψ stands for the global function of the MLCA and N > 2 is a se-
cret parameter. Thus a confused image Ĩ is obtained from the union of the
subimages defined by CN−1 and CN . Set JĨ the associated binary matrix to
Ĩ.

– The dealer computes the following configurations using the non-reversible
LCA defined by (9) and (10): Φ2mi

0 (JĨ) , Φ2mi

1 (JĨ), where 1 ≤ i ≤ n/2. Note
that the order of the binary matrix JĨ is r × (u · c) and u · c must be an
even integer number such that u · c ≡ 2 (mod 3). If u · c does not satisfy these
conditions, a suitable number of bits must be padded to obtain the desirable
bitlength.

– The dealer securely distributes the parameter N and the images obtained
from the shares between the participants: P 1

i ↔ Φ2mi

0 (JĨ) , P 2
i ↔ Φ2mi

1 (JĨ),
with 1 ≤ i ≤ n/2.

Once the shares are computed, the dealer can destroy the numbers m1, . . . , mn/2.
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3.3 The Recovery Phase

In this phase the authorized pairs of users, P 1
i , P 2

i , can recover the secret digital
image I as follows:

– First of all, they compute the confused image Ĩ by the following XOR oper-
ation: JĨ = Φ2mi

0 (JĨ) + Φ2mi

1 (JĨ) (mod 2). Note that the algebraic property
stated in Theorem 1 is used.

– Subsequently, the confused image Ĩ is divided into two subimages: Ĩ1 and Ĩ2

of order r/2× c and the secret image I is obtained by computing the inverse
evolution of the MLCA as follows: C0 =JĨ2

, C1 =JĨ1
, Ct =Ψ−1

(
Ct−1, Ct−2

)
,

with 2 ≤ t ≤ N .

4 The Security Analysis

4.1 Main Properties of the Protocol

The secret sharing scheme proposed in this work is perfect since it involves non-
reversible LCA. Consequently, from one configuration of the form Φ2m

0 (JĨ) or
Φ2m

1 (JĨ) it is impossible to determine the initial configuration JĨ . Moreover,
this scheme can be also considered as ideal since in “good” cases (when the
bitlengh of the rows of I satisfies the conditions stated in the sharing phase),
the size of the shares is exactly the same than the size of the secret to be
shared. Otherwise, the bitlength between the secret and the shares differs in
a few bits. Consequently, there is not a significant data expansion. Moreover,
since the images are considered as configurations of cellular automata, no loss
of resolution is presented in the recovered image.

4.2 Statistical Analysis

We have performed a statistical analysis in order to prove the confusion and
diffusion properties of the proposed protocol, which allows it to strongly resist
statistical attacks. Specifically the histograms of original image and the shares
are checked and the correlation coefficients are computed.

Let us consider the 256 gray-scale image of size 128×128 given in Figure 1-(a).
Its histogram is shown in Figure 1-(a’). The shared images computed by means
of LCA Φ0 and the following artificially chosen parameters: N = 5, m1 = 1, m2 =
2, m3 = 3 are shown in Figure 1-(b),(c) and (d), whereas their corresponding
histograms are shown in Figure 1-(b’),(c’) and (d’). The shares obtained from
LCA Φ1 and their histograms are shown in Figure 2. From the figures one can
see that the histograms of the shares are fairly uniform and they are significantly
different from that of the original image. It demonstrates that the secret sharing
algorithm has covered up all the characters of the original image and shows good
performance of balanced 0-1 ratio and zero correlation.

The following procedure will be carryied out to test the correlation between
two adjacent pixels in the original and the shared images: First of all randomly
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Fig. 1. (a) Lena’s picture defined by 128×128 pixels and 256 gray levels; (b) Share 1.1
computed for m1 = 1 and Φ0; (c) Share 2.1 computed for m2 = 2 and Φ0; (d) Share 3.1
computed for m3 = 3 and Φ0; (a’) Histogram of Lena image; (b’) Histogram of Share
1.1; (c’) Histogram of Share 2.1; (d’) Histogram of Share 3.1

select 1.000 pairs of two adjacent pixels from the image, and then, calculate the
correlation coefficient of each pair by using the following formula:

rxy =
cov (x, y)

√
D (x)

√
D (y)

, (12)

where x and y are the grey-scale values of the two adjacent pixels in the image
and:

cov (x, y) =
1
N

N∑

i=1

(xi − E (x)) (yi − E (y)) , (13)
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Fig. 2. (a) Share 1.2 computed for m1 = 1 and Φ1; (b) Share 2.2 computed for m2 = 2
and Φ1; (c) Share 3.2 computed for m3 = 3 and Φ1; (a’) Histogram of Share 1.2; (b’)
Histogram of Share 2.2; (c’) Histogram of Share 3.2.

E (x) =
1
N

N∑

i=1

xi, D (x) =
1
N

N∑

i=1

(xi − E (x))2 . (14)

As a consequence, the results obtained are shown in Table 1.

Table 1. Correlation coefficients of two adjacent pixels

Horizontal Vertical Diagonal

Lena image 0.9418 0.8510 0.8441
Share 1.1 0.0239 0.0448 0.0018
Share 2.1 −0.0107 0.0108 −0.0587
Share 3.1 0.0728 0.0288 0.0259
Share 1.2 0.0087 0.0039 −0.0145
Share 2.2 0.0099 −0.0214 0.0123
Share 3.2 0.0674 −0.0495 −0.0238

The correlations coefficients of the original image and shared images are far
apart (note that the correlation coefficients of Lena’s picture are close to 1,
whereas the corresponding coefficients of the shared images are very close to 0).
Consequently, the secret sharing algorithm satisfies zero co-correlation.
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4.3 Differential Attack

To test the influence of one-pixel change on the whole ciphered image, a usual
measure is used: the number of pixels change rate, NPCR, which measures the
percentage of different pixel numbers between two images.

Suppose that S1 and S2 are two shares obtained from two original images
which differ in only one-pixel. Moreover, set K1 = (pij) and K2 = (qij) their
associated matrices, and define a bipolar array of size r × c, D = (dij), such
that dij = 0 if pij = qij , and dij = 1 otherwise. The NPCR is defined as
follows:

NPCR =

∑r
i=1

∑c
j=1 dij

r · c × 100%. (15)

Some tests have been performed on the proposed scheme about the influence
of only one-pixel change on the 256 gray-scale image of size 128× 128 given in
Figure 1-(a). If we change the (64, 64)-th pixel of the original image and its value
passes from 29 to 30, the NPCR coefficient is shown in Table 2:

Table 2. NPCR coefficient of the computed shares

Share 1.1 Share 2.1 Share 3.1 Share 1.2 Share 2.2 Share 3.2

NPCR 99.9634 99.9634 99.9390 99.9634 99.9634 99.9329

4.4 Computational Complexity

The number of bit operations involving the sharing phase and the recovery phase
are different. Specifically, the following results hold:

– In the sharing phase, the number of bit operations necessary to compute the
confused image Ĩ is 9 · u ·N · r · c. Moreover, to compute all shared images
it is necessary to obtain the 2mn/2-th configuration of both LCA. As a sim-
ple calculus shows the number of bit operations necessary to compute the
shares are: 3 · 2mn/2 · u · r · c − 2mn/2 · r. Consequently, the whole process
takes

3 · u · (3 ·N + 2mn/2) · r · c− 22+mn/2 · r. (16)

bit operations.
– In the recovery phase, to get the secret image I, a qualified pair of users has

to perform a XOR operation between their shares (u ·r ·c bit operations) and
to compute inverse iteration by means of the inverse MLCA (9 · u · r · c bit
operations). Consequently, to recover the original image u · (9 ·N + 1) · r · c
bit operations are necessary.

Note that the recovery phase is faster than the sharing phase, and it is an
important and desirable feature of such protocols.
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5 Generalization of the Protocol

As is stated in the protocol introduced above, only specific pairs of participants:
those of the form

{P 1
i , P 2

i }, 1 ≤ i ≤ n/2, (17)

can recover the secret image by pooling their shares. As a consequence there
exist only n/2 qualified subsets of participants. Nevertheless, this protocol can
be easily generalized to obtain an access structure with (n/2)2 qualified subsets:

{P 1
i , P 2

j }, 1 ≤ i ≤ n/2, 1 ≤ j ≤ n/2, (18)

as follows: The setup phase is exactly the same than in the first proposal. In the
sharing phase, the dealer distributes the following data among the participants:

P 1
i ↔ {Φ2mi

0 (JĨ) , mi}, P 2
i ↔ {Φ2mi

1 (JĨ) , mi}, 1 ≤ i ≤ n/2. (19)

Finally, in the recovery phase the participants P 1
i , P 2

j recover the secret image
I as follows:

– They compare the integer numbers mi and mj .
– If mi < mj , then P 1

i computes Φ2mi+mj−mi

0 (JĨ) = Φ2mj

0 (JĨ). On the other
hand, if mj < mi, then P 2

j computes Φ2mj+mi−mj

1 (JĨ) = Φ2mi

1 (JĨ).
– The secret is obtained by simply applying the inverse MLCA and comput-

ing: Φ2mj

0 (JĨ) + Φ2mj

1 (JĨ) (mod 2) in the first case, and S = Φ2mi

0 (JĨ) +
Φ2mi

1 (JĨ) (mod 2) in the second case.

Note that this modification of the protocol allows one to obtain an access struc-
ture given by two disjoint subsets,

A1 = {P 1
i , 1 ≤ i ≤ n/2}, A2 = {P 2

j , 1 ≤ j ≤ n/2}, (20)

such that to recover the secret it is necessary that two participants (one from
A1 and other from A2) pool their shares.

6 Conclusions

In this work a novel (2, n)-secret sharing scheme has been presented. It is based
on the use of three linear two-dimensional cellular automata: one of them is a
reversible memory linear cellular automata and the another are non-reversible
linear cellular automata. The protocol consists of three phases: The setup phase
where the local transition functions are determined; The sharing phase where
the evolutions of the cellular automata are computed to obtain the shares; and
the recovery phase where the original image is computed by means of a XOR
operation and the evolution of the inverse memory cellular automata.
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Its main features are the following:

– There is neither data expansion nor loss of resolution since the image is
considered as a configuration of a cellular automata.

– It is a perfect scheme since it involves non-reversible cellular automata. More-
over, the shares exhibits good statistical properties.

– The computational complexity is low since the rules governing the cellular
automata used involves only XOR operations.

Further work is aimed at designing an (2, n)-threshold scheme with a more
general access structure and a secret sharing (m, n)-scheme, with m > 2.
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Abstract. In this note a new model of grammatical picture generation
is introduced. The model is based on the notion of pure context-free
grammars of formal string language theory. The resulting model, called
Pure 2D context-free grammar (CFG), generates rectangular picture ar-
rays of symbols. The generative power of this model in comparison to
certain other related models is examined. Also we associate a regular
control language with a Pure 2D CFG and notice that the generative
power increases. Certain closure properties are obtained.

1 Introduction

Theoretical studies on digital pictures and picture analysis include syntactic
techniques as one of the main areas of study. In the problem of generation and
description of picture patterns considered as connected, digitized, finite arrays
of symbols, syntactic methods have played a significant role on account of their
structure-handling ability. Several picture language generating devices have been
introduced in the literature based on generalizing to two dimensions different
kinds of grammars like the Chomskian string grammars, the Lindenmayer sys-
tems (L systems) and so on and adapting the techniques and results of formal
string language theory. See for example [5,6,14,1].

One of the earliest picture models was proposed by Siromoney et al [9], moti-
vated by certain floor designs called “kolam” patterns. In this two-dimensional
model, which we call as Siromoney matrix grammar, generation of rectangu-
lar arrays takes place in two phases with a sequential mode of rewriting in the
first phase generating strings of intermediate symbols and a parallel mode of
rewriting these strings in the second phase to yield rectangular picture patterns.
Recently there has been a renewed interest in the study of Siromoney matrix
grammars [12,13].

Another very general rectangular array generating model, called extended
controlled tabled L array system (ECTLAS) was proposed by Siromoney and
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Siromoney [10], incorporating into arrays the developmental type of generation
used in the well-known biologically motivated L-systems. Here the symbols ei-
ther on the left, right, up or down borders of a rectangular array are rewritten
simultaneously by equal length strings to generate rectangular picture arrays.

Pure context-free grammars [4] which make use of only one kind of symbols,
called terminal symbols, unlike the Chomskian grammars, have been investigated
in formal string language theory for their language generating power and other
properties. In this note we introduce a new two-dimensional grammar, called
Pure 2D Context-free grammar (CFG), for picture array generation based on
pure context-free rules. Unlike the models in [9,10], we allow rewriting any col-
umn or any row of the rectangular array rewritten and do not prescribe any
priority of rewriting columns and rows as in [9] in which the second phase of
generation can take place only after the first phase is over. We compare the
generative power of the new model with those in [9,10,11,2]. Certain closure
properties are obtained. Also we associate a regular control language with a
Pure 2D CFG and notice that the generative power increases. Interpretation of
the letter symbols in picture arrays by primitive patterns is a well-known tech-
nique to obtain interesting classes of “kolam” [9] pictures or “chain code” [3,12]
pictures and so on. We indicate here chain code interpretation of the picture
arrays generated by Pure 2D CF grammars.

2 Preliminaries

Let Σ be a finite alphabet. A word or string w = a1a2 . . . an (n ≥ 1) over Σ is
a sequence of symbols from Σ. The length of a word w is denoted by |w|. The
set of all words over Σ, including the empty word λ with no symbols, is denoted
by Σ∗. We call words of Σ∗ as horizontal words. For any word w = a1a2 . . . an,
we denote by wT the vertical word

a1

a2

...
an

We also define (wT )T = w. We set λT as λ itself. A rectangular m× n array
M over Σ is of the form

M =

a11 · · · a1n

...
. . .

...
am1 · · · amn

where each aij ∈ Σ, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The set of all rectangular arrays over
Σ is denoted by Σ∗∗, which includes the empty array λ. Σ∗∗ − {λ} = Σ++. We
denote respectively by ◦ and � the column concatenation and row concatenation
of arrays in V ∗∗. In contrast to the case of strings, these operations are partially
defined, namely, for any X, Y ∈ V ∗∗, X ◦ Y is defined if and only if X and Y
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have the same number of rows. Similarly X � Y is defined if and only if X and
Y have the same number of columns.

We refer to [5,6] for array grammars. For notions of formal language theory we
refer to [8]. We briefly recall pure context-free grammars [4] and the rectangular
picture generating models in [9,10,11,1,2].

Definition 1 ([4]). A pure context-free grammar is G = (Σ, P, Ω) where Σ is
a finite alphabet, Ω is a set of axiom words and P is a finite set of context-free
rules of the form a → α, a ∈ Σ, α ∈ Σ∗. Derivations are done as in a context-
free grammar except that unlike a context-free grammar, there is only one kind
of symbol, namely the terminal symbol. The language generated consists of all
words generated from each axiom word.

Example 1. The pure context-free grammar G = ({a, b, c}, {c → acb}, {acb})
generates the language {ancbn/n ≥ 1}.
We restrict ourselves to recalling Tabled 0L array systems (T0LAS) introduced
in [10] for generating rectangular picture arrays.

Definition 2. A tabled 0L array system (T 0LAS) is G = (T,P , M0) where
• T is a finite nonempty set (the alphabet of G);
• P is a finite set of tables, {t1, t2, . . . , tk}, and each ti, i = 1, . . . , k, is a left,
right, up, or down table consisting respectively, of a finite set of left, right, up,
or down rules only. The rules within a table are context-free in nature but all
right hand sides of rules within the same table are of the same length;
• M0 ∈ Σ++ is an axiom array of G.

A derivation in G takes place as follows: Starting with a rectangular array M1 ∈
Σ++, all the symbols of either the rightmost or leftmost column or the uppermost
or lowermost row of M1 are rewritten in parallel respectively by the rules of a left
or a right table or an up or a down table to yield a rectangular array M2. A set
M(G) of rectangular arrays is called a Tabled 0L array language (T 0LAL) if and
only if there exists a tabled 0L array system G such that M(G) = {M |M0 ⇒∗

M, M ∈ T ∗∗}. The family of Tabled 0L array languages is denoted by L(T 0LAL).

In the 2D grammar model introduced in [9], which we call as Siromoney Matrix
grammar, a horizontal word Si1 . . . Sin over intermediate symbols is generated
by a Chomskian grammar. Then from each intermediate symbol Sij a vertical
word of the same length over terminal symbols is derived to constitute the jth
column of the rectangular array generated. We recall this model restricting to
regular and context-free cases.

Definition 3. A Siromoney matrix grammar is a 2−tuple (G1, G2) where

G1 = (H1, I1, P1, S) is a regular or context-free grammar,
H1 is a finite set of horizontal nonterminals,
I1 = {S1, S2, · · · , Sk}, a finite set of intermediates, H1 ∩ I1 = ∅,
P1 is a finite set of production rules called horizontal production rules,
S is the start symbol, S ∈ H1,
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G2 = (G21, G22, · · · , G2k) where
G2i = (V2i, T, P2i, Si), 1 ≤ i ≤ k are regular grammars,
V2i is a finite set of vertical nonterminals, V2i ∩ V2j = ∅, i �= j,
T is a finite set of terminals,
P2i is a finite set of right linear production rules of the form
X −→ aY or X −→ a where X, Y ∈ V2i, a ∈ T
Si ∈ V2i is the start symbol of G2i.

The type of G1 gives the type of G , so we speak about regular, context-free
Siromoney matrix grammars if G1 is regular, context-free respectively. Deriva-
tions are defined as follows: First a string Si1Si2 · · · Sin ∈ I∗1 is generated
horizontally using the horizontal production rules of P1 in G1. That is, S ⇒
Si1Si2 · · · Sin ∈ I∗1 . Vertical derivations proceed as follows: We write

Ai1 · · · Ain

⇓

ai1 · · · ain

Bi1 · · · Bin

if Aij → aijBij are rules in P2j , 1 ≤ j ≤ n. The derivation terminates if Aj →
amj are all terminal rules in G2.

The set L(G) of picture arrays generated by G consists of all m × n arrays
[aij ] such that 1 ≤ i ≤ m, 1 ≤ j ≤ n and S ⇒∗

G1
Si1Si2 · · · Sin ⇒∗

G2
[aij ] . We

denote the picture language classes of regular, CF Siromoney Matrix grammars
by RML, CFML respectively.

The regular/context-free Siromoney Matrix grammars were extended in [11] by
specifying a finite set of tables of rules in the second phase of generation with
each table having either right-linear nonterminal rules or right-linear terminal
rules. The resulting families of picture array languages are denoted by TRML
and TCFML and are known to properly include RML and CFML respectively.

Based on a well known characterization of recognizable string languages in
terms of local languages and projections, an interesting model of Tiling Recog-
nizable languages describing rectangular picture arrays was introduced in [1,2].
We now recall briefly these notions.

Given a rectangular picture array p of size m× n over an alphabet Σ, p̂ is an
(m+2)× (n+2) picture array obtained by surrounding p by the special symbol
# /∈ Σ in its border. A square picture array of size 2× 2 is called a tile. The set
of all tiles which are sub-pictures of p is denoted by B2×2(p).

Definition 4. Let Γ be a finite alphabet. A two-dimensional language or picture
array language L ⊆ Γ ∗∗ is local if there exists a finite set Θ of tiles over the
alphabet Γ ∪ {#} such that L = {p ∈ Γ ∗∗/B2×2(p̂)} ⊆ Γ ∗∗. The family of local
picture array languages will be denoted by LOC.
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Definition 5. A tiling system (TS) is a 4-tuple T = (Σ, Γ, Θ, π)where Σ and
Γ are two finite alphabets, Θ is a finite set of tiles over the alphabet Γ ∪ {#}
and π : Γ → Σ is a projection.

The tiling system T recognizes a picture array language L over the alphabet
Σ as follows: L = π(L′) where L′ = L(Θ)is the local two-dimensional language
over Γ corresponding to the set of tiles Θ. We write L = L(T ) and we say that
L is the language recognized by T. A picture array language L ⊆ Σ∗∗ is tiling
recognizable if there exists a tiling system T such that L = L(T ). The family of
tiling recognizable picture array languages is denoted by REC.

3 Pure 2D Picture Grammars

We now introduce a new two-dimensional grammar for picture generation. The
salient feature of this model is that the shearing effect in replacing a subarray
of a given rectangular array is taken care of by rewriting a row or column of
symbols in parallel by equal length strings and by using only terminal symbols
as in a pure string grammar. This new model is related to the model T0LAS
in [10] in the sense that a column or row of symbols of a rectangular array is
rewritten in parallel. This feature incorporates into arrays the parallel rewriting
feature of the well-known and widely investigated Lindenmayer systems [7]. But
the difference between this new model and the T0LAS in [10] is that the rewriting
is done only at the “edges” of a rectangular array in a T0LAS whereas here we
allow rewriting in parallel of any column or row of symbols. We now define the
new grammar model.

Definition 6. A Pure 2D Context-free grammar (P2DCFG) is a 4-tuple G =
(Σ, Pc, Pr,M′) where

• Σ is a finite set of symbols ;
• Pc = {tci/1 ≤ i ≤ m}, Pr = {trj/1 ≤ j ≤ n};
Each tci , (1 ≤ i ≤ m), called a column table, is a set of context-free rules of the
form a→ α, a ∈ Σ, α ∈ Σ∗ such that for any two rules a→ α, b→ β in tci , we
have |α| = |β| where |α| denotes the length of |α|;
Each trj , (1 ≤ j ≤ n), called a row table, is a set of context-free rules of the form
c → γT , c ∈ Σ and γ ∈ Σ∗ such that for any two rules c → γT , d → δT in trj ,
we have |γ| = |δ|;
• M′ ⊆ Σ∗∗ − {λ} is a finite set of axiom arrays.
Derivations are defined as follows: For any two arrays M1, M2, we write M1 ⇒
M2 if M2 is obtained from M1 by either rewriting a column of M1 by rules of
some column table tci in Pc or a row of M1 by rules of some row table trj in Pr.
⇒∗ is the reflexive transitive closure of ⇒ .

The picture array language L(G) generated by G is the set of rectangular
picture arrays {M/M0 ⇒∗ M ∈ Σ∗∗, for some M0 ∈ M′}. The family of pic-
ture array languages generated by Pure 2D Context-free grammars is denoted by
P2DCFL.
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M0 ⇒
x b b x
z y y z
x b b x

⇒

x b b x
x b b x
z y y z
x b b x
x b b x

⇒

x b b x
x b b x
x b b x
z y y z
x b b x
x b b x
x b b x

⇒

x b b b x
x b b b x
x b b b x
z y y y z
x b b b x
x b b b x
x b b b x

= M1

Fig. 1. Derivation M01 ⇒∗ M1

x x x y x x x
b b b z b b b
b b b z b b b
b b b z b b b
b b b z b b b
b b b z b b b

Fig. 2. A picture array M2

Example 2. Consider the Pure 2D Context-free grammar G = (Σ1, Pc1 , Pr1 ,
{M01}) where Σ1 = {x, y, z, b}, Pc1 = {tc1}, Pr1 = {tr1}

tc1 = {b→ bb, y → yy}, tr1 =

⎧
⎨

⎩

b
y → y

b
,

x
z → z

x

⎫
⎬

⎭
, M01 =

x b x
z y z
x b x

A sample derivation M01 ⇒M1 , on using tc1 , tr1 , tr1 , tc1 in this order, is given
in Figure 1:

Each of the arrays occurring in the derivation given belongs to the picture
language generated by G1.

Example 3. Consider the Pure 2D Context-free grammar G = (Σ2, Pc2 , Pr2 ,
{M02}) where Σ2 = {x, y, z, b}, Pc2 = {tc2}, Pr2 = {tr2}
tc2 = {y → xyx, z → bzb} tr2 =

{

x→ x
b
, y → y

z

}

M02 = x y x
b z b

G2 generates picture arrays M2 of the form shown in Figure 2.
Here again we note that the number of rows in the generated picture array

need not have any proportion to the number of columns but will have an equal
number of columns to the left and right of the middle column (yz . . . z)T .

4 Comparisons and Closure Results

We now compare the new 2D grammar model introduced here with those in
[9,10,1,2].

Theorem 1. The family of P2DCFL is incomparable with the families of RML
and CFML but not disjoint with these families.
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Proof. The picture language consisting of rectangular arrays over a single sym-
bol a of all sizes m × n(m, n ≥ 1) is generated by a regular Siromoney matrix
grammar G. In fact the language of horizontal words generated in the first phase
of G1 is {Sn

1 /n ≥ 1} where S1 is an intermediate symbol and the language of
vertical words generated by S1 in the second phase is {(an)T /n ≥ 1}. A corre-
sponding Pure 2D CF grammar consists of a column table with the rule a→ aa

and a row table with the rule a → a
a

and axiom array a. The incomparability

with CFML is due to the fact that it is known [9] that the picture languages
in examples 2 and 3 cannot be generated by any context-free Siromoney matrix
grammar and hence by any regular Siromoney matrix grammar since each of the
generated pictures of example 2, has an equal number of rows above and below
the middle row zy . . . yz and in example 3, each of the generated pictures has an
equal number of columns to the left and right of the middle column (yz . . . z)T .
On the other hand a picture language consisting of rectangular arrays of the
form M1 ◦M2 where M1 and M2 are rectangular arrays over the symbols a, b
respectively with equal number of columns can be generated by a context-free
Siromoney matrix grammar with the language of horizontal words Sn

1 Sn
2 (S1, S2

are intermediate symbols) in the first phase and S1, S2 generating vertical words
over a, b respectively. This picture language, cannot be generated by any Pure
2D context-free grammar since the string language {anbn/n ≥ 1} is not a pure
CFL [4] and an argument similar to this can be done in the two-dimensional case
also. The incomparability with RML can be seen by considering a picture lan-
guage with rectangular arrays each row of which is a word in a3b3(ab)∗, known
[4] to be not a Pure CFL.

Theorem 2. The family of P2DCFL is incomparable with the families of
TRML and TCFML but not disjoint with these families.

Proof. In view of the proper inclusions RML ⊂ TRML, CFML ⊂ TCFML
and incomparability (Theorem 1) of P2DCFL with RML and CFML , it is
enough to note that the picture array language of example 2 generating picture
arrays as shown in Figure 1 can neither belong to TRML nor to TCFML, in
view of the fact that in the picture arrays in Figure 1 each has an equal number
of rows above and below the middle row zy . . . yz.

Theorem 3. Every language in the family L(T 0LAL) is a coding of a Pure 2D
CFL.

Proof. Let L be a picture array language generated by a T 0LAS [10] G =
(T,P , M0). We construct a Pure 2D CFG G′as follows: For each symbol a in the
alphabet T of G, we introduce a new distinct symbol A. Let T ′ = {A/a ∈ T }.
Each rule of the form a→ a1a2 · · · amb, A, B ∈ T ′, ai(1 ≤ i ≤ m), b ∈ T in a right
table t, is replaced by a rule A→ a1a2 · · · amB, A, B ∈ T ′, ai(1 ≤ i ≤ m), b ∈ T .
Each rule of the form a → a1a2 · · · amb, A, B ∈ T ′, ai(1 ≤ i ≤ m), b ∈ T in
a down table t, is replaced by a rule A → (a1a2 · · · amB)T , A, B ∈ T ′, ai(1 ≤
i ≤ m), b ∈ T . Likewise the rules in left and up tables are replaced by rules
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constructed with a similar idea. Then G′ = (T ∪T ′,P ′, {M ′
0}) where P ′ consists

of the tables of G with each table having the rules replaced as mentioned above.
The modified left and right tables of G become the column tables of G′ and the
modified up and down tables of G the row tables of G′. The axiom array M

′
0

is M0 with its border symbols replaced by the new symbols. Define a coding c
(a letter to letter mapping) by c(A) = a where A is the new symbol introduced
corresponding to a. It can be seen that c(L(G′)) = L.

Theorem 4. The family of Pure 2D Context-free languages is incomparable with
LOC and REC.

Proof. The language of square picture arrays with 1s in the main diagonal and
0s in other positions is known [1] to be in LOC and the language of square pic-
ture arrays over 0s is known [1] to be in REC but both these languages cannot
be generated by any P2DCFG for the simple reason that the language of square
arrays cannot be generated by a P2DCFG as the rewriting of a column and of a
row are independent. On the other hand a picture array language L1 consisting
of arrays M = M1 ◦ c ◦M1 where M1 is a string over a (M is a picture array
with only one row) is generated by a P2DCFG with a column rule c→ aca but
L1 is known [1] to be not in REC and hence not in LOC.

It is a well-known tool in formal language theory [8] to control the sequence of
application of rules of a grammar by requiring the control words to belong to
a language. Generally, if the control words constitute a regular language, the
generative power of a grammar might not increase. Here we associate a regular
control language with a Pure 2D CFG and notice that the generative power
increases.

Definition 7. A Pure 2D Context-free grammar with a regular control is Gc =
(G, Lab(G), C) where G is a Pure 2D Context-free grammar, Lab(G) is a set of
labels of the tables of G and C ⊆ Lab(G)∗ is a regular (string) language. The
words in Lab(G)∗ are called control words of G. Derivations M1 ⇒w M2 in Gc

are done as in G except that if w ∈ Lab(G)∗ and w = l1l2 . . . lm then the tables
of rules with labels l1, l2, . . . lm are successively applied starting with M1 to yield
M2. The picture array language generated by Gc consists of all picture arrays
obtained from the axiom array of G with the derivations controlled as described
above. We denote the family of picture array languages generated by Pure 2D
Context-free grammars with a regular control by (R)P2DCFL.

Lemma 1. The Pure 2D Context-free grammar G in example 2 with a regular
control language {(l1l2)n/n ≥ 1} on the labels l1, l2 of the tables tc1 , tr1 respec-
tively, generates picture arrays as shown in Figure 1 but with sizes (2n+1)×(n+
2), n ≥ 1, and thus having a proportion between the height (the number of rows
in a picture array) and width (the number of columns in a picture array). In fact
the number of rows above and below the middle row zy . . . yz equals the number of
columns between the leftmost and rightmost columns, namely, (x . . . xzx . . . x)T .
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Proof. The tables of rules generating the picture array language in example 2

are tc1 = {b→ bb, y → yy}, tr1 =

⎧
⎨

⎩

b
y → y

b
,

x
z → z

x

⎫
⎬

⎭
. Since the control language

on the labels of the tables consists of words {(l1l2)n/n ≥ 1}, an application of
the rules of the table tc1 is immediately followed by an application of the rules of
the table tr1 so that the array rewritten grows one column followed by one row
above and one row below the middle row zy . . . yz.The resulting array is then
collected in the language generated. This process is repeated so that the arrays
generated have a proportion between the width and height as mentioned in the
statement of the theorem.

Theorem 5. The family of P2DCFL is properly contained in (R)P2DCFL.

Proof. The containment follows since every P2DCFL is generated by a P2DCFG
G and the regular control language is Lab(C)∗ itself. The proper containment is
a consequence of the Lemma 1.

Generating “square arrays” over one symbol a is of interest in picture array
generation. Such square arrays can be generated by a ‘simple’ P2DCFG with a
regular control.

Theorem 6. The picture array language consisting of square arrays over one
symbol a is generated by a P2DCFG with a regular control.

Proof. The P2DCFG ({a}, {tc1}, {tr1}, a) where tc1 = {a→ aa}, tr1 = {a→ a
a
}

with the regular control language {(l1l2)n/n ≥ 1} where l1, l2 are respectively
the labels of tc1 , tr1 can be seen to generate the picture array language consisting
of square arrays over one symbol a.

We now examine some of the closure properties of P2DCFL. We also consider
operations of transposition, reflection about base, reflection about leg. The oper-
ation of transposition of a rectangular array interchanges the rows and columns.
The operation of reflection about the base reflects the rectangular array about
the bottommost row and of reflection about the leg reflects the rectangular array
about the leftmost column.

Theorem 7. The family of P2DCFL is not closed under union, column cate-
nation, row catenation but is closed under projection, transposition, reflection
about the base and reflection about the leg.

Proof. Let the alphabet be {a, b, c, x, y}. Non-closure under union follows by
the fact that L1 = {X1 ◦ (cn)T ◦ Y1/X1 ∈ {a}++, Y1 ∈ {b}++, |X1|c = |Y1|c}
where |X |c stands for the number of columns of X , is generated by a P2DCFG
with a column table consisting of a rule c → acb and a row table with rules

a → a
a
, b → b

b
, c → c

c
. Likewise L2 = {X2 ◦ (cn)T ◦ Y2/X2 ∈ {x}++, Y2 ∈

{y}++, |X2|c = |Y2|c} is also generated by a similar P2DCFG. It can be seen
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that L1 ∪ L2 cannot be generated by any P2DCFG, since such a grammar will
require a column table with rules of the forms c → acb and c → xcy. But then
this will yield arrays not in the union.

Non-closure under column catenation of arrays can be seen by considering
L1 ◦ L2 and noting that any P2DCFG generating L1 ◦ L2 will again require a
column table with rules c→ acb and c→ xcy but then this will lead to generating
arrays not in the column catenation L1 ◦ L2. Non-closure under row catenation
can be seen in a similar manner.

If L is a picture array language generated by a P2DCFG G and LT is the
transposition of L, then the P2DCFG G′ to generate LT is formed by taking
the column tables of G as row tables and row tables as column tables but for
a rule a → α in a column table of G, the rule a → αT (α ∈ Σ∗∗) is added in
the corresponding row table of G′ and likewise for a rule b → βT (β ∈ Σ∗∗) in
a row table of G, the rule b→ β is added in the corresponding column table of
G′. Closure under the operations of reflection about base, reflection about leg
can be seen in a similar manner.

5 Interpretations of Picture Arrays

The idea of interpreting letter symbols in a picture array by primitive patterns
is a well-known technique to obtain interesting classes of “kolam” [9] pictures
or chain code [3] pictures and so on. We can employ here this technique to
generate such picture patterns as an application of the Pure 2D CF grammars.
Each symbol of a rectangular array is considered to occupy a unit square in the
rectangular grid so that each row or column of symbols in the array respectively
occupies a horizontal or vertical sequence of adjacent unit squares. A mapping i,
called an interpretation, from the alphabet Σ = {a1, a2, . . . an} of a Pure2DCFG
G to a set of primitive picture patterns {p1, p2, . . . pm} is defined such that for
1 ≤ i ≤ n, i(ai) = pj, for some 1 ≤ j ≤ m. A primitive picture pattern could
be a blank. Given a picture array M over Σ, i(M) is obtained by replacing
every symbol a ∈M by the corresponding picture pattern i(a). For instance, in
Example 2, if we define, using two chain code primitives, namely, , − the

|||
|||
|||
|||
|||
|||
|||
|||
|||
|||
|||
|||

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

|||
|||
|||
|||
|||
|||
|||
|||
|||
|||
|||
|||

Fig. 3. The alphabetic letter H
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interpretation mapping i by i(x) = i(z) = , i(y) = − and i(b) = blank then
the interpretation i(M1) of M1 in Figure 1 will give a picture of the alphabetic
letter H (Figure 3).

Likewise if the primitive picture patterns are those used in “kolam” pictures,
we can obtain “kolam” patterns from Pure 2D CFL via suitable interpretation.

6 Conclusion

The picture array generating model based on pure context-free grammars in-
troduced here does not prescribe a priority of rewriting column or row unlike
[9,11] and does not allow rewriting only the borders of an array as in [10]. But it
requires a “control” to maintain a “proportion” between the number of columns
and the number of rows. In the case of string grammars, the class of pure CFLs
[4], is included in the class of CFLs. Here we have seen that the family of Pure
2D CFLs becomes incomparable with the family of CFMLs introduced in [9].
But we can extend the model of Pure 2D CFG by allowing nonterminal symbols
as well and this might increase the power of this model. It remains to be seen
in future whether this kind of an extension will be more powerful than the 2D
model in [10]. Also it remains to examine whether other properties [4] of pure
string languages carry over to the Pure 2D Context-free grammars.
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Abstract. In this paper we have developed a context sensitive translator for  
optically recognizing the Braille codes for Urdu language. Urdu is a context 
sensitive language and have different glyphs of an alphabet depending upon the 
position of use. Our research is aimed at bridging the gap between blind and 
sighted people. We developed Braille codes for Urdu, scanned the Braille, rec-
ognized it optically, devised a deterministic Turing machine for context sensi-
tive translation and generated the output in Urdu. 

Keywords: optical recognition, context sensitive translation, Braille, determi-
nistic Turing machine, Urdu glyphs. 

1   Introduction 

Braille, the language of blind, was developed by Louis Braille in 1821. Each Braille 
cell consists of six raised dots in a two column format, each column containing three 
dots. There is an extended version of Braille too, having eight dots with four dots in 
each column. A typical Braille page is 280x292 mm with approximately 40 Braille 
cells per line and 25 lines. A Braille dot is raised by approximately 0.5 mm and the 
other dimensions are as shown in Fig. 1. 

Braille is understandable by visually impaired people however sighted people need 
not be able to understand these codes. So there is a communication gap between blind 
and sighted people. A lot of effort has been made by different researches to bridge 
this gap. These efforts may generally be categorized as: 

1) Text to Braille translation 
2) Braille to text translation 

Our technique is concerned with Braille to text translation and the novelty of the 
technique is that it is designed for Urdu language in which characters have different 
glyphs depending upon the context. So a context sensitive translation is required 
which is not the case for English. 

In the following sections we will discuss different issues regarding our technique in 
detail. Section 2 deals with different techniques employed for text to Braille transla-
tion while section 3 is dedicated to Braille to text translation techniques. Section 4 de-
picts the general structure of Urdu glyphs and their Braille codes. Section 5 explains 
our technique for optical recognition of Braille cells while section 6 demonstrates the  
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Fig. 1. Braille cell dimensions 

context sensitive translation of the Braille codes into Urdu. The discussion is con-
cluded with a summary in section 7 followed by future recommendations in section 8. 

2   Text to Braille Translation 

The systems developed for text to Braille translation deal with the computerized 
production of Braille codes from text. A Braille printer or press is attached with 
such a system and text is automatically printed in Braille format. One of such sys-
tem was developed by Das et al. [4] and the major feature of the system is that it 
can handle grade 1 as well as grade 2 Braille. The system also supports different In-
dian languages. Another system developed by Blenkhorn and Evans [2] for text to 
Braille translation is unique in a sense that it preserves the formatting (italic, bold, 
etc.) of the text into Braille by inserting different Braille markers as formatting let-
ters. The systems proposed by Watanabe et al. [18] and Otsuka et al. [16] convert 
Japanese text into Braille using neural networks. Yet another system developed by 
Hara et al. [8] is dedicated to the conversion of mathematical expressions in 
LATEX to Braille. 

Some other researches have worked on the material to be used for Braille cells and 
the way it is used. One of such efforts is by Lee and Lucyszyn [11] who developed a 
microchemical refreshable Braille cell. Their main emphasis is on selection and heat 
treatment of the material for Braille cell. Another Braille display developed by Nobels 
et al. [15] used electromagnetic actuators. This is a low cost, small size refreshable 
display. 

3   Braille to Text Translations 

Recognizing and translating Braille code into text have always been of great interest 
to researchers. Different techniques for Braille OCR have been proposed and imple-
mented in the past. One of the very first systems to convert Braille into text was de-
veloped by Dubus et al. [5] and the technique adopted deals with basic operations of 
image processing to recognize Braille characters. Yet some other very early systems  
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were developed by Mennens et al. [12] and Blenkhorn [1] to handle Standard English 
Braille. 

An OCR for Braille developed by Hermida et al. [7] uses scanned images of 
Braille as an input and can handle two sided Braille. Another optical recognizer for 
Braille designed by Murray and Dias [13, 14] converts grade 1 and grade 2 types 
Braille into text. The Braille dots are determined using fuzzy logic to accommodate 
positional errors. The system of Wong et al. [19] is limited to single sided Braille, 
uses neural networks and can maintain the original document layout. A Braille trans-
lator developed by Jiang et al. [10] is especially meant for Chinese Braille. 

An interesting Braille translator of Germagnoli and Magenes [6] converts the Ital-
ian Braille codes into sound using artificial tactile sensors. 

4   Urdu Glyphs and Braille Codes 

Urdu language is different from English and the other similar languages in two ways: 
It is right to left language and each character may have one out of four shapes depend-
ing upon the context in which it is used. These shapes are known as glyphs. For ex-

ample ‘Beh’ second alphabet in Urdu may have four shapes or glyphs. It may have ب 

or ب or ب or ب shape if is used as isolated or as final character of a word or as initial 
character of a word or in between other characters within a word, respectively. Ishida 
[9] and Bhurgri [3] gave a very good study on Urdu glyphs, their shapes and their  
implementation in Microsoft word. We developed Braille codes for each of the char-
acters in Urdu and a standard for the use of Unicode for Urdu [17] in our Braille 
translator. The Braille codes were developed in consultation with The Directorate of 
Special Education and The Training College for Teachers of Blind, Pakistan. We per-
formed an extensive analysis of the experiences encountered by relevant people, 
sighted as well as blind, for this standardization. 

Table 1 Represents the Braille codes for Urdu alphabets and the Unicode for each 
glyph. Some of the alphabets have only one or two shapes independent of the posi-
tion. We have treated these alphabets like others and used single Unicode representa-

tion for each glyph. For example ء has only one shape but we have assumed four 
glyphs and used the same Unicode for all the glyphs for the sake of uniformity. 

5   Optical Recognition of Braille Cells 

We have used scanned images of Braille as input in our technique. The image is gray-
scaled, binarized and the position of the dots is determined by the standard distances 
for Braille. A threshold value of 84 for binarization of grascale images is chosen after 
a series of experiments on scanned images of the Braille. The main emphasis of our 
technique is not on the issues of optical recognition; instead we have concentrated on 
the context sensitivity of Urdu Braille. Interested readers may consult the papers men-
tioned in section 3, typically [12] fro error detection in the Braille. Sample execution 
of our approach is shown in Fig. 2. 
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Table 1. Braille and Unicode Representations of Urdu Glyphs 

Glyphs (Unicode for Urdu Glyphs) 
Index 

(i) 
Braille 
Code 

Urdu 
Alphabet Isolated 

(j=0) 
Final
(j=1) 

Initial 
(j=2) 

Medial
(j=3) 

0 FE81 FE82 FE81 FE81 

1 FE8D FE8E FE8D FE8D 

2 FE8F FE90 FE91 FE92 

3 FB56 FB57 FB58 FB59 

4 FE95 FE96 FE97 FE98 

5 FB66 FB67 FB68 FB69 

6 FE99 FE9A FE9B FE9C 

7 FE9D FE9E FE9F FEA0 

8 FB7A FB7B FB7C FB7D 

9 FEA1 FEA2 FEA3 FEA4 

10 FEA5 FEA6 FEA7 FEA8 

11 FEA9 FEAA FEA9 FEA9 

12 FB88 FB89 FB88 FB88 

13 FEAB FEAC FEAB FEAB 

14 FEAD FEAE FEAD FEAD 

15 FB8C FB8D FB8C FB8C 
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Table 1. (continued) 

Glyphs (Unicode for Urdu Glyphs) 
Index 

(i) 
Braille 
Code 

Urdu 
Alphabet Isolated 

(j=0) 
Final
(j=1) 

Initial 
(j=2) 

Medial
(j=3) 

16 FEAF FEB0 FEAF FEAF 

17 FB8A FB8B FB8A FB8A 

18 FEB1 FEB2 FEB3 FEB4 

19 FEB5 FEB6 FEB7 FEB8 

20 FEB9 FEBA FEBB FEBC 

21 FEBD FEBE FEBF FEC0 

22 FEC1 FEC2 FEC3 FEC4 

23 FEC5 FEC6 FEC7 FEC8 

24 FEC9 FECA FECB FECC 

25 FECD FECE FECF FED0 

26 FED1 FED2 FED3 FED4 

27 FED5 FED6 FED7 FED8 

28 FB8E FB8F FB90 FB91 

29 FB92 FB93 FB94 FB95 

30 FEDD FEDE FEDF FEE0 

31 FEE1 FEE2 FEE3 FEE4 
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Table 1. (continued) 

Glyphs (Unicode for Urdu Glyphs) 
Index 

(i) 
Braille 
Code 

Urdu 
Alphabet Isolated 

(j=0) 
Final
(j=1) 

Initial 
(j=2) 

Medial
(j=3) 

32 FEE5 FEE6 FEE7 FEE8 

33 FEED FEEE FEED FEED 

34 FBA6 FBA7 FBA8 FBA9 

35 FE80 FE80 FE80 FE80 

36 FBFC FBFD FBFE FBFF 

37 FBAE FBAF FBAE FBAE 
 

 

Fig. 2. Sample execution (A) Scanned Braille image in grayscale (B) Binarized image (C) Urdu 
translation 

6   Context Sensitive Translation 

We have developed a deterministic Turing machine for context sensitive translation of 
Braille into Urdu. An interesting point during translation is that Urdu Braille is writ-
ten from left to right while Urdu language itself is from right to left. To handle this  
 



348 M.A. Fahiem 

  

Fig. 3. Turing machine for context sensitive translation of Urdu Braille 

issue, we read the Unicode from output tape of Turing machine from left to right and 
inserted it into a stack. The output of the stack resulted in the formation of text from 
right to left direction. Our machine is shown in Fig. 3. The machine has the following 
states and input / output alphabets. 

Input: Σ = { } 370;,,][ ≤≤Δ iSpaceiBraille  

Output: Г = { } 30,370;,,]][[ ≤≤≤≤Δ jiSpacejiGlyph  

Sates: q = { }71,, LHaltStart  

Braille [i] is the index of Braille code while Glyph [i] [j] is the corresponding 
glyph for a particular value of i as shown in Table 1. Δ represents the blank or end of 
input. 

Following is the algorithm that we used for context sensitive translation: 

integer: previous, current, next 

previous = 38 

current = getInput() 

next = getInput() 
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while !endOfInput 

    if previous = = 38 && next = = 38 

        writeOutput (glyph[current][0]) 

    if previous != 38 && next != 38 

        writeOutput (glyph[current][3]) 

    if previous != 38 && next = = 38 

        writeOutput (glyph[current][1]) 

    if previous = = 38 && next != 38 

        writeOutput (glyph[current][2]) 

    previous = current 

    current = next 

    next = getInput() 

/* 

38 is the index of Space 

writeOutput writes unicode of appropriate glyph shown 
in Table 1 

getInput returns the index of corresponding Braille 
code 

*/ 

7   Summary 

There is a gap between the sighted and the blind people and we have developed a sys-
tem to bridge this gap. First of all we have developed Braille code for Urdu and then 
standardized the Unicode representation for Urdu glyphs. Our system translates 
Braille for Urdu into Urdu language. The translation is context sensitive as Urdu has 
different glyphs of a character depending upon the position of its appearance. 

8   Future Recommendations 

In this paper we have dealt with only single sided Braille for Urdu. Our work can be 
extended to handle double sided Braille. Moreover we have not incorporated Urdu 
numeric yet, and this can be accommodated in the future. 
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Abstract. Membrane Computing is a branch of natural computing aim-
ing to abstract computing ideas for the structure and the functioning of
living cells as well as from the way the cells are organized in tissues or
higher order structures. We consider iso-picture languages introduced in
[2,3] and the possibility to handle them with P systems. In this paper
we introduce regular iso-array rewriting P system, context-free iso-array
rewriting P system and Basic puzzle iso- array rewriting P system and
they are compared for generative power.

Keywords: Iso-array languages, membrane computing, P system.

1 Introduction

The present paper brings together two areas of theoretical computer science
which were not very much linked before, membrane computing and picture gram-
mars - the latter are considered here in the form of 2D iso-array grammars.

Membrane computing deals with distributed computing models inspired from
the structure and the functioning of the living cell [6]. Very briefly, in the com-
partments (also called regions) defined by a hierarchical arrangement of mem-
branes, one processes multisets of objects by evolution rules associated with
the membranes. One of the branches of membrane computing is concerned with
objects described by strings, and then one considers usual sets of strings (lan-
guages) instead of multisets of objects. These strings are processed by rewriting
or other string handling operations [1].

The research and development of multi-dimensional pattern recognition, scene
analysis, computer vision and image processing have progressed very rapidly in
recent years. Among various models employed for pattern representation and
analysis, the array grammar has attracted more and more attention because it
has several advantages over others [7,8]. Motivated by problems in tiling, Nivat
et al. [5] proposed a class of grammars called puzzle grammars for generating
connected arrays of unit cells. It has been shown that Basic Puzzle Grammars
have higher generative power than regular array grammars [9].

Iso-arrays are made up of isosceles right angled triangles and an iso-picture
is a picture formed by catenating iso-arrays of same size. We introduced the no-
tion of iso-arrays, iso-pictures and iso-picture languages in [2]. A motivation for

V.E. Brimkov, R.P. Barneva, H.A. Hauptman (Eds.): IWCIA 2008, LNCS 4958, pp. 352–362, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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this study is that one can generate some interesting iso-picture languages which
cannot be generated by earlier models available in the literature. In particu-
lar iso-picture languages include more picture languages like hexagonal picture
languages, rectangular picture languages, languages of rhombuses and triangles.
One application of the study of iso-picture languages is its use in the generation
of interesting kolam patterns. Another application of this study lies in the area
of tiling rectangular plane.

In this paper we introduce rewriting P systems to generate iso-picture lan-
guages. We show that Basic Puzzle Iso-Array rewriting P systems have higher
generative power than Regular Iso-Array rewriting P systems.

2 Preliminaries

In this section we recall the notions of iso-pictures, iso-picture languages and
iso-triangular tiling systems proposed in [2,3].

Let Σ = { ����A
a

a

2

1 3a , ����Bbb 13

b2 , ��
��Cc
3

2
1c

c
, ��

��D
d1
d3

d2 } be a finite set of labeled isosceles right

angled triangular tiles of dimensions 1√
2
, 1√

2
and 1 unit, obtained by intersecting

a unit square by its diagonals. Gluable rules of tile A are as follows: Tiles which
can be glued with A are B, C and D by the rules {(a1, b1), (a2, b2), (a3, b3),
(a3, c1), (a1, d3)}. In a similar way the gluable rules can be defined for the re-
maining tiles.

Definition 1. An iso-array is an isosceles right-angled triangular arrangement
of elements of Σ, whose equal sides are denoted as S1 and S3 and the unequal side
as S2. An iso-array of size m consists of m tiles along the side S2 and it contains
m2 gluable elements of Σ. Iso-arrays can be classified as U -iso-array, D-iso-array,
R-iso-array and L-iso-array, if tiles A, B, D and C are used in side S2 respectively.

For example the U -iso-array of size 3 (U3), D-iso-array of size 3 (D3), L-iso-array
of size 3 (L3) and R-iso-array of size 3 (R3) are shown in Fig. 1.

S1

S2

BA A A
A A

A
B

B
S1S3

S2

A A
A

B B B
B B

B

S2

S3

S1 S3

S1

C
C

C

C
C

C S2S3 D
D

D
D

D

D

D

D
D

C
C

C

U3 D3 L3 R3

Fig. 1.

Iso-arrays of same size can be catenated using the following catenation oper-
ations. Horizontal catenation ©− is defined between U and D iso-arrays of same
size. Right catenation ©/ is defined between any two gluable iso-arrays of same
size. This catenation includes the following:
(a) D ©/ U (b) U ©/ R (c) D ©/ L (d) R ©/ L
In a similar way vertical ©� and left ©\ catenations can be defined.



354 S. Annadurai et al.

Definition 2. An iso-picture is a picture formed by catenating iso-arrays of
same size. It is said to be of size (n, m) if there are n iso-arrays of size m
catenated to form the iso-picture. The number of tiles in any iso-picture of size
(n, m) is nm2.

An element of an iso-picture p of size (n, m) is represented as p(i, j, k), where
i is the ith iso-array of the picture and j is the jth row of the ith iso-array
and k is the kth element of jth row of the ith iso-array, where i = 1, 2, . . . , n,
j = 1, 2, . . . , m and k = 1, 2, . . . , 2j − 1. The set of all iso-pictures over the
alphabet Σ is denoted by Σ∗∗

I . An iso-picture language L over Σ is a subset of
Σ∗∗

I .

Definition 3. Let p be an iso-picture of size (n, m). We denote by Bn′,m′(p),
the set of all sub iso-pictures of p of size (n′, m′), where n′ ≤ n, m′ ≤ m.
p̂ is an iso-picture obtained by surrounding p with a special boundary symbols

���� ����
��
		




��, , ,#A #D#B #C �∈ Σ.

Definition 4. A Regular Iso-Array Grammar (RIAG) is a structure

G = (N, T, P, S) where N = {����A , . . . } and T = {����a , . . . }
are finite sets of symbols (isosceles right angled triangular tiles

���� ���� ��
��

��
��, , ,A B C D ,

........
........
........
................................

....................................
........
........
....

........................................................

........................................................
a b c d, , , ); N ∩ T = φ.

Elements of N and T are called non terminals and terminals respectively,
S ∈ N is the start symbol or the axiom. P consists of rules of the following
forms

(1) (2)

(4)

A

#

a

B
# A B a

(3) A # a B #
A a

D

(6)(5)
A

#
a

C A a

where A, B, C and D are non terminals and a is a terminal. Similar rules can
be given for the other tiles ����

��
��

��
��

B C, and D .

Definition 5. A Context-Free Iso-Array grammar (CFIAG) is a structure

G = (N, T, P, S) where N = {����A , . . . } and T = { ����a , . . . }
are finite nonempty set of symbols (isosceles right angled triangular tiles

���� ���� ��
��

��
��, , ,A B C D ,

........
........
........
................................

....................................
........
........
....

........................................................

........................................................
a b c d, , , ); N ∩ T = φ. Elements of N and T are

called non terminals and terminals, respectively, S ∈ N is the start symbol or the
axiom. P consists of rules of the form α→ β, where α and β are finite connected
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array of one or more triangular tiles over V ∪ T ∪ { ���� ����
��
		




��, , ,#A #D#B #C } and

satisfy the following conditions:

1. The shapes of α and β are identical.
2. α contains exactly one nonterminal and possibly one or more #s.
3. Terminals in α are not rewritten.
4. The application of the rule α → β preserves the connectedness of the host

array (that is, the application of the rule to a connected array results in a
connected array).

The rule α → β is applicable to a finite connected array γ over V ∪ T ∪
{ ���� ����

��
		




��, , ,#A #D#B #C } if α is a subarray of γ and in a direct derivation step,

one of the occurrences of α is replaced by β, yielding a finite connected array δ.
We write γ ⇒G δ.

Definition 6. A Basic Puzzle Iso-Array Grammar (BPIAG), is a structure

G = (N, T, R, S) where N = {����A , . . . } and T = { ����a , . . . }
are finite sets of symbols (isosceles right angled triangular tiles

���� ���� ��
��

��
��, , ,A B C D ,

........
........
........
................................

....................................
........
........
....

........................................................

........................................................
a b c d, , , ); N ∩ T = φ.

Elements of N and T are called non terminals and terminals, respectively,
S ∈ N is the start symbol or the axiom. P consists of rules of the form

(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

(11)

A
a

C

A Ba

b AA A B a

A B

a

bA
A

A d
A

A D
a

A
A

c

A

A bA

a

Similar rules can be given for the other tiles ����
��
��

��
��

B C, and D .

Derivations begin with S written in a unit cell in the two-dimensional plane,

with all other cells containing the blank symbol { ���� ����
��
		




��, , ,#A #D#B #C } not

in N ∪ T . In a derivation step, denoted by ⇒, a nonterminal ����A in a cell is

replaced by the right hand member of a rule, whose left hand side is ����A . In this
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replacement, the circled symbol of the right side of the rule used occupies the
cell of the replaced symbol and the non-circled symbol of the right side occupies
the cell to the right or the left or above or below the cell of the replaced symbol,
depending on the type of the rule used. The replacement is possible and defined
only if the cell to be filled in by the non-circled symbol contains a blank symbol.

3 Iso-array Rewriting P Systems

In this section, we recall the notion of rewriting P system [4,6] and introduce
the notion of iso-array rewriting P system. We give some examples of iso-array
rewriting P systems.

P system [6] is a new compatibility model of a distributed parallel type based
on the notion of a membrane structure. Such a structure consists of computing
cells which are organized hierarchically by the inclusion relation. Each cell is
enclosed by its membrane. Each cell is an independent computing agent with its
own computing program, which produces objects. The interaction between cells
consists of the exchange of objects through membranes.

A membrane structure can be represented in a natural way as a Venn diagram.
(Fig. 2).

Skin membrane

1

Membrane
Elementary Regions

2

3

4
5

6

7
8

9

Fig. 2. A membrane structure

The membranes are labeled in one-to-one manner. Each membrane identifies
a region delimited by it and the membranes placed directly inside it (if any). A
membrane without any other membrane inside it is said to be elementary.

The membrane surrounding the cell which is the highest in the hierarchy is
called the skin membrane.

In the regions delimited by the membranes we place multisets of objects from
a specified finite set V together with evolution rules for these objects.

In this paper, we concentrate on rewriting P systems.

Definition 7. A rewriting P system of degree n, n ≥ 1, is a construct

π = (V, T, μ, L1, . . . , Ln, R1, . . . , Rn)
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where

(i) V is the total alphabet of the system;
(ii) T ⊆ V is the terminal alphabet;
(iii) μ is a membrane structure;
(iv) Li, 1 ≤ i ≤ n, are finite languages over V representing the strings initially

present in the regions 1, . . . , n of μ;
(v) Ri, 1 ≤ i ≤ n, are finite sets of rewriting rules of the form X → v(tar),

where X ∈ V, v ∈ V ∗, and tar ∈ {here, out, in}.
We process string objects in rewriting P systems with rules of the form X →
v(tar), where X → v is a usual context-free rule and tar ∈ {here, in, out} is a
target indication specifying the region where the result of rewriting should go. All
strings are processed in parallel, but each single string is rewritten by only one
rule. In other words, the parallelism is maximal at the level of strings and rules,
but the rewriting is sequential at the level of the symbols from each string.

The application of a rule u → v in a region containing a multiset μ results
in subtracting from μ the multiset identified by u, and then in following the
prescriptions of v. If an object appears in v in the form (a, here), then it remains
in the same region; if it appears in the form (a, out), then a copy of object a will
be introduced in the region of the membrane place directly outside the region of
the rule u → v; if it appears in the form (a, ini), then a copy of a is introduced
in the region of the membrane with label i.

Definition 8. An iso-array rewriting P system is a construct

π = (V, T, ���� ����
��
		




��, , ,#A #D#B #C , μ, F1, . . . , Fm, R1, . . . , Rm, i0)

where V is the total alphabet consisting of isosceles right angled triangles

���� ���� ��
��

��
��, , ,A B C D , T ⊆ V is the terminal alphabet, ���� ����

��
		




��, , ,#A #D#B #C are

the blank symbols, μ is a membrane structure with m membranes labeled in a
one-to-one way with 1, 2, . . . , m, F1, . . . , Fm are finite sets of iso-arrays over V
associated with the m regions of μ, R1, . . . , Rm are finite sets of iso-array rewrit-
ing rules over V associated with the m regions of μ; the rules have attached
targets here, out, in, hence they are of the form Ai,1 → Bi,1 (tar); finally, i0 is
the label of an elementary membrane of μ (the output membrane).

According to the form of its rules, an iso-array rewriting P system can be
regular (REG) or context-free (CF).

(i) A rule is called regular if it is one of the forms given in Definition 4.
(ii) A rule is called context-free if it is one of the forms given in Definition 5.

A computation in an iso-array rewriting P system is defined in the same way as
in a string rewriting P system with the successful computations being the halting
ones: each iso-array, from each region of the system, which can be rewritten by
a rule associated with that region (membrane), should be rewritten; this means
that one rule is applied (the rewriting is sequential at the level of iso-arrays); the
iso-array obtained by rewriting is placed in the region indicated by the target
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associated with the used rule (here means that the iso-array remains in the same
region, out means that the iso-array exits the current membrane - thus, if the
rewriting was done in the skin membrane, then it can exit the system; iso-arrays
leaving the system are “lost” in the environment), and in means that the iso-array
is immediately sent to one of the directly lower membranes, nondeterministically
chosen if several exist (if no internal membrane exists, then a rule with the target
indication in cannot be used).

A computation is successful only if it stops, a configuration is reached where
no rule can be applied to the existing iso-arrays. The result of a halting compu-
tation consists of the iso-arrays composed only of symbols from T placed in the
membrane with label i0 in the halting configuration.

The set of all such iso-arrays computed (we also say generated) by a system Π
is denoted by IAL(Π). The family of all iso-array languages IAL(Π) generated
by system Π as above, with at most m membranes, with rules of type
α ∈ {REG, CF} is denoted by IARPm(α).

We briefly discuss several examples, both in order to illustrate the previous
definitions and to shed some light on the power of iso-array rewriting P systems.

Example 1. Consider a regular iso-array rewriting P system

π1 = ({ ����A , ����B ,
��
��C ,

��
��D , ........

........
........
................................

....................................
........
........
....

........................................................

........................................................
a b c d, , , }, { ........

........
........
................................

....................................
........
........
....

........................................................

........................................................
a b c d, , , },

���� ����
��
		




��, , ,#A #D#B #C

[1[2[3]3]2]1, { �
�

�
��
D

A }, φ, φ, R1, R2, R3, 3) where

R1 =

{

��

�
�
�
�

��

�
�
�
�

�
�
�

��
�
� �

�
�

��
�
�

D d

C (in), (in)D

C c

#C #D
}

R2 =

{

� �

� �� �

�
��

��
�

�
��

��
�

�
��

��
�

�
��

��
�

�
��

� �
�

�
��

� �
�

�
��

� �
�

�
��

� �
�

� �

(out), (in),

(out), (in)

B
#A Ab B

#A b a

A
#B #B

Aa aB b

}

R3 =

{
........................................................................

........................................................................

�
........................................................................

�
........................................................................

,D d C c

}

�
�

�
�

�
�
�

�
�

�
�

�
�

��
��

�

c

d

a b a
b

d

c

A member of the system is shown above. The nonterminals ����A and ����B take
care of growing the horizontal arm (in membrane 2) and the nonterminals ��

��C
and
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��
��D

take care of growing the vertical arm (in the skin membrane) step by step; at

any time, the iso-array may be sent from membrane 2 to membrane 3 by using
any one of the rules ��

��
� 


�

��
� 





�

�



�

�
�(in),B

#A
b

a A
#B

a B (in) and

the computation stops after using one of the rules

........................................................................

........................................................................

�
........................................................................

�
........................................................................

,D d C c from

membrane 3. IAL(π1) consists of all L-shaped angles with equal arms, each arm
being of length at least one.

Example 2. IAL(π1) can be generated by a context-free iso-array rewriting P
system as follows:

π2 = ({���� ���� ��
��

��
��, , ,A B C D

, ........
........
........
................................

....................................
........
........
....

........................................................

........................................................
a b c d, , , }, { ........

........
........
................................

....................................
........
........
....

........................................................

........................................................
a b c d, , , },

���� ����
��
		




��, , ,#A #D#B #C

{

.........
.........

........

.........
.........

........

..............................................................................

D
C
d
A

}

, φ, φ, R1, R2, R3, 3)

Starting from the unique iso-array present initially in region 1, one grows step by
step the two arms of an L-shaped angle, with one pixel up in the skin membrane
and with one pixel to the right in membrane 2, at any moment, from membrane
2 we can send the array to membrane 3 (at that step three pixels are added
to the horizontal arm) and the computation stops. Thus IAL(π2) consists of all
L-shaped angles with equal arms, each arm being of length at least two.

4 Basic Puzzle Iso-array Rewriting P System

In this section, we introduce the notion of basic puzzle iso-array rewriting P
system and compare it with regular iso-array rewriting P system for generative
power. We obtain some interesting results.

Definition 9. A basic puzzle iso-array rewriting P system is an iso-array rewrit-
ing P system, in which the rules are of the forms as in Definition 6.

Derivations begin with S written in a unit cell in the two-dimensional plane,

with all other cells containing the blank symbol { ���� ����
��
		




��, , ,#A #D#B #C } not

in N ∪ T . In a derivation step, denoted by ⇒, a nonterminal ����A in a cell is

replaced by the right hand member of a rule, whose left hand side is ����A . In this
replacement, the circled symbol of the right side of the rule used occupies the
cell of the replaced symbol and the non-circled symbol of the right side occupies
the cell to the right or the left or above or below the cell of the replaced symbol,
depending on the type of the rule used. The replacement is possible and defined
only if the cell to be filled in by the non-circled symbol contains a blank symbol.

Example 3. A basic puzzle iso-array rewriting P system generating a sequence
of overlapping right angled triangles is given below:
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π3 = ({ ����A , ����B , ����a , ����b }, { ����a , ����b }, { ����A },
φ, φ, R1, R2, R3, 3) where

R1 =

{

� �
���� ������ ����

� ���� ��
� Ba (here),A B a

B (in)

}

R2 =

{

� �............................................
.........

.........
........ .........

.........
.........
.......................................................................................
.........

.........
........� ............................................

.........
.........

........ .........
.........
.........
.......................................................................................
.........

.........
........�A

B b
(in),

A
B b

(out)

}

R3 =

{
�

.........
.........

.........
....................................... .........

.........
.........

.......................................
�A a

}

A sample derivation is shown below:

A Ba a b
b

a
a

a
a

aa ab
A

Theorem 1. The class of picture languages generated by regular iso-array rewrit-
ing P systems is strictly included in the class of picture languages generated by basic
puzzle iso-array rewriting P systems.
i.e., L(IARPm(REG)) ⊂ L(IARPm(BPG)).

Proof. We first note that every regular iso-array rewriting P system is a basic
puzzle iso-array rewriting P system. Rules of regular iso-array rewriting P sys-
tem in the form given in Definition 4 can be respectively written in the form of
rules of a basic puzzle iso-array rewriting P system as

(1) (2)

(4)

A

#

a

B
# A B a

(3) A # a B #
A a

D

(6)(5)
A

#
a

C aA

Similar rules can be given for the other tiles. This proves the inclusion part.
Proper inclusion can be seen from the fact that the class of picture languages

given in Example 3, cannot generated by any regular iso-array rewriting P sys-

tem as the junctions in �
��

�
...................................

.........
........

ba
a

a cannot be handled by regular iso-array rewriting
P system.

It is known that context-free puzzle grammars coincide with context-free ar-
ray grammars [9] in generating power. The same is true for iso-array grammars
also. Hence we call the iso-array rewriting P system of degree m with context-
free puzzle iso-array grammar (CFPIAG) rules or context-free iso-array grammar
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(CFIAG) rules as context-free (CF) iso-array rewriting P system of degree m,
denoted by IARPm(CF).

Theorem 2

(i) L(IARPm(REG)) ⊂ L(IARPm(BPG)) ⊂ L(IARPm(CF ))
(ii) L(IARP1(X)) = L(X), X ∈ {RIAG, BPIAG, CFIAG}
where L(RIAG) and L(CFIAG) are the iso-array language classes of regular
array grammars and CF array grammars and L(BPIAG) is the iso-array lan-
guage class of basic puzzle grammars.

The inclusions in (i) and the equality in (ii) are clear from the definitions.

Theorem 3

(i) L(IARP3(REG)) − L(RIAG) �= φ
(ii) L(IARP3(BPG)) − L(BPIAG) �= φ
(iii) L(IARP3(BPG)) ⊃ L(IARP3(REG))

Proof. (i) The iso-array language IAL(π1) consisting of all L-shaped angles with
equal arms, each arm being of length at least one can be generated by the regu-
lar iso-array rewriting P system given in Example 1. But this picture language
IAL(π1) cannot be generated by any regular iso-array grammar, as the rules of
regular iso-array grammar cannot maintain proportion.
(ii) The iso-array language consisting of iso-picture arrays describing token L
with equal arms and single protrusions is generated by the following iso-array
rewriting P system π with basic puzzle iso-array grammar rules.

π = ({ ����A , ����B ,
��
��C ,

��
��D , ........

........
........
................................

....................................
........
........
....

........................................................

........................................................
a b c d, , , }, { ........

........
........
................................

....................................
........
........
....

........................................................

........................................................
a b c d, , , },

���� ����
��
		




��, , ,#A #D#B #C

, [1[2[3]3]2]1, {
�

�
�
��
D

A
}, φ, φ, R1, R2, R3, 3)

R1 =

{

� �
�

��

��
��

��

��
��

�
��

��
��

�
��

��
��

����
����

� ����
���� d

C (in)D

C c

#C #D

D
(in),D C D (here),#C

}

R2 =

{

� �����
����

����
����

� ����� �� ���� ��
A

#B

A

b
(here), (out),B

#A Ab

� � ���� ���� ������ ������ ������ ������������
� �(in),B

#A b a (out), (in)A
#B #B

Aa aB b

}

R3 =

{
........................................................................

........................................................................

�
........................................................................

�
........................................................................

,D d C c

}
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d

c d

c

c

c

c

d

a a a ab b b

b b

d

Token L with equal arms and protrusions. But the language class cannot be gen-
erated by BPIAG as maintaining equal arms is not possible with BPIAG rules.
(iii) It follows from Theorem 1.

5 Conclusion

We have introduced iso-array rewriting P systems namely regular, context-free
and basic puzzle iso-array rewriting P systems to generate iso-picture languages.
It is proved that basic puzzle iso-array rewriting P systems have more generative
power than regular iso-array rewriting P systems.
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Abstract. We investigate a natural generalization of the problem of
reconstruction of a binary matrix A with prescribed row and column
sums: we consider an integer matrix whose list of coefficients is given
in the input. The question is to organize the coefficients in the matrix
in order to obtain prescribed row and column sums. We prove that this
problem is NP-complete by reducing it to a 2D problem of Discrete
Tomography with 3 directions of projections.

Keywords: discrete tomography, combinatorial matrix theory,
NP-completeness.

1 Introduction

Reconstruction of binary matrices with prescribed line sums is a subject which
has drawn attention of many mathematicians and computer scientists since the
fifties. The initial problem was the reconstruction of a binary matrix with pre-
scribed row and column sums. We call it for short Gale-Ryser problem from the
name of the two pioneers which have both and independently discovered in 1957
that the question can be solved in polynomial time [5,12]. This result is the start-
ing point of many generalizations which have been considered in combinatorial
frameworks (Time-Table problems [4,10], Combinatorial Matrix Theory[1]...) or
under pression of Electronic Microscopy, Medical Imaging (Discrete Tomogra-
phy [9,6]...). Most of these generalizations are known today as NP-hard. Some of
these complexities remain open problems such as for instance the multi-atomic
problem of reconstruction with 3 kinds of atoms [7,3].

We consider in this paper a new generalization in relation with Combinatorial
Matrix Theory or Tomography. The input is made of a row sum vector R, a
column sum vector S and an initial integer matrix X0. The question is to permute
the coefficients of X0 in order to obtain a matrix X with the prescribed line sums
R and S. If we consider an initial matrix X0 with only binary coefficients, we
fall in the well-known framework of initial Gale-Ryser problem. With coefficients
which are just assumed to be integers, the problem becomes more complicated.
As the coefficients are not restricted to {0, 1}, we can consider matrices X0

V.E. Brimkov, R.P. Barneva, H.A. Hauptman (Eds.): IWCIA 2008, LNCS 4958, pp. 363–371, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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and X as gray-levels images. In this framework, the problem is to permute
the pixels of an image in order to obtain prescribed row and column sums. It
places the problem on the boundary of Discrete Tomography (the set of the
coefficients remains discrete since it is finite) and Computerized Tomography
since we can work with any gray-level image. We are also clearly in the framework
of Combinatorial Image Theory or again Combinatorial Matrix Theory. This last
field provides an interpretation of our problem in terms of flows in a bipartite
graph: imagine that ri passengers are waiting in m airports (1 ≤ i ≤ m) and
that a flight supervisor has the mission to send them in n other airports. sj (with
1 ≤ j ≤ n) passengers exactly are waited in the arrival airport j (without taking
account of their origin). The aircraft is made of exactly mn planes with several
given capacities that sum is equal to

∑m
i=1 ri =

∑n
j=1 sj . How to organize the

aerial traffic between the airports in order to transport the
∑m

i=1 ri =
∑n

j=1 sj

passengers from their starting place to an arrival (their should be exactly one
plane for deserving each pair of airports)?

The task of this paper is to prove that this generalization of Gale-Ryser prob-
lem is NP-hard. We obtain this result by reducing it to a 2-dimensional problem
of Discrete Tomography with an horizontal, a vertical and a diagonal direction
of projection.

2 NewP and HardP

Let X ∈Mm,n(N) be an integer matrix with m rows and n columns. The coeffi-
cient in row i and column j is denoted xi,j . The row sum vector of X is denoted
R(X): by definition its ith coordinate is ri =

∑n
j=1 xi,j . In the same way, the

column sum vector is denoted S(X) and its jth coordinate is sj =
∑m

i=1 xi,j .
We introduce also the set of matrices P(X) of all matrices obtained by per-

mutation of the coefficients of X . All these matrices have exactly the same
coefficients but not in the same places.

Example. Matrix X ′ =

⎛

⎝
4 2 4
6 0 5
0 4 1

⎞

⎠ is in P (X) where X =

⎛

⎝
0 4 4
4 6 2
0 5 1

⎞

⎠.

We focus our attention on the following generalization of Gale-Ryser problem
(we call it NewP).

Problem 1 (NewP). Input: Two integer vectors R ∈ N
m, S ∈ N

n and an integer
matrix X0 ∈Mm,n(N).
Output: Does there exist a matrix X ∈ P (X0) verifying R(X) = R and S(X) =
S?

NewP is a problem of consistency. The question is to know if there exists a
permutation of coefficients of X0 allowing to obtain the prescribed row and
column sums R and S. If we restrict the coefficients of X0 from N to {0, 1},
NewP is reduced to the Gale-Ryser problem.
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The input X0 is given here under the form of a matrix but it could be as well
a list of mn coefficients since their initial order in X0 is of no importance for the
problem. This choice is however more convenient than a list because it allows to
limit the objects used in the paper to matrices.

NewP is clearly in NP because we can check in polynomial time if a given
matrix X is a solution of an instance. Our goal is to prove that NewP is NP-
complete. Such a proof requires to provide a polynomial encoding in an instance
of NewP of a second problem already known as NP-hard . The second problem
that we are going to use is a problem of Discrete Tomography with three direc-
tions (horizontal, vertical and diagonal). It requires to introduce a notation for
the third direction of projection. Given matrix X , we denote T (X) the antidiag-
onal sum vector that kth coordinate is tk =

∑
i+j=k+1 xi,j (the +1 in condition

i + j = k + 1 is necessary to have an index k starting from 1).

Example. With matrix X =

⎛

⎝
2 0 2
1 3 2
0 1 1

⎞

⎠ we have R(X) = (4, 6, 2), S(X) = (3, 4, 5)

and T (X) = (2, 1, 5, 3, 1).

With these notations, we have the following consistency problem:

Problem 2 (HardP). Input: Three integer vectors R ∈ N
m, S ∈ N

n and T ∈
N

m+n−1.
Output: Does there exist a binary matrix Y ∈Mm,n({0, 1}) verifying R(Y ) = R,
S(Y ) = S and T (Y ) = T ?

HardP is NP-hard even by considering square matrices (m = n) [8]. We can also
notice that it can be understood as a problem of reconstruction on the hexagonal
grid using projections along the three principal axes [11].

3 Tools

3.1 Barycenter of a Matrix

We introduce the notion of barycenter of a matrix. This notion is related to
classical notion of barycenter by considering that the coefficient xi,j is the weight
of point (i, j). Thus the barycenter G(A) of matrix A is

(iG(A), jG(A)) =
∑

1≤i≤m,1≤j≤n

ai,j(i, j)/W

where W is the sum of all coefficients (W =
∑

1≤i≤m,1≤j≤n ai,j). We can easily
assume that W is different from 0 - we just have to avoid the trivial case of null
matrix- since we work with matrices having only positive coefficients.

We notice that the two coordinates of the barycenter of matrix A can be
deduced from the row and column sums vectors: The first coordinate of the
barycenter of A is iG(A) =

∑
1≤i≤m,1≤j≤n iai,j/W =

∑m
i=1 iri/W with W =
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∑m
i=1 ri =

∑n
i=1 si. The same computation on second coordinate provides jG

(A) =
∑n

j=1 jsj/W . It means that if A and A′ are two solutions of problem
NewP, they have the same barycenter.

We introduce now the coordinate kG(A) of barycenter of matrix A according to
diagonal direction: it is just the sum the two coordinates according to index i and
j. Hence, we have kG(A) = iG(A) + jG(A) namely kG(A) =

∑
1≤i≤m,1≤j≤n(i +

j)ai,j/W . By adding the coefficients ai,j with a sum of indices i + j = k, we
can rewrite it kG(A) =

∑m+n
k=2 ktk−1/W where tk is the kth coordinate of the

antidiagonal line sums (T (A) = (tk)1≤k≤m+n−1). It proves the next lemma:

Lemma 1. By denoting ri, sj and tk the coordinates of the line sums vectors
R(A), S(A), T (A) of any matrix A, we have

∑m
i=1 iri+

∑n
j=1 jsj =

∑m+n
k=2 ktk−1.

Lemma 1 puts in relation the diagonal coordinate of the barycenter of matrix
A with its horizontal and vertical coordinates. It will be more practical in the
following to avoid the denominator /W from the coordinates iG(A), jG(A) and
kG(A). Thus we introduce notation IG(A) = WiG(A), JG(A) = WjG(A) and
KG(A) = WkG(A) with the advantage that they depend linearly on A.

3.2 Technical Lemma

We introduce a technical lemma. The proposition just says that with two se-
quences of positive integers (fi)1≤i≤d ∈ N

d and (gi)1≤i≤d ∈ N
d, the sum

∑d
i=1

figσi where σ is a permutation of the indices is maximal over the set of all per-
mutations if and only if the order (≤) of fi fits with the one of gσi . In other
words, the sum is maximal by multiplying the greatest fi by the greatest gi, the
second greatest fi by the second greatest gi...

Lemma 2 (Technical). Let (fi)1≤i≤d ∈ N
d, (gi)1≤i≤d ∈ N

d and σ be a per-
mutation of {1...d}. The sequence gσi is increasing relatively to the order of
(fi)1≤i≤d ( fi < fi′ implies gσi ≤ gσi′ ) if and only if

∑d
i=1 figσi is maximal over

the set of permutations (for any permutation σ′,
∑d

i=1 figσ′
i
≤∑d

i=1 figσi ).

3.3 Increasing and Maximal Matrices

A matrix A is called maximal if for any matrix A′ in P (A), we have kG(A′) ≤
kG(A) (or KG(A′) ≤ KG(A) since the sum of all coefficients is the same).
We say that a matrix A is increasing if the sequence ai,j of its coefficients is
increasing from antidiagonal to antidiagonal namely if i + j < i′ + j′ implies
ai,j ≤ ai′,j′ .

Example. Matrix A =

⎛

⎝
0 2 2 5
1 3 3 8
2 4 6 8

⎞

⎠ is increasing while matrix A′ =

⎛

⎝
0 0 1 1
0 1 2 3
2 3 3 4

⎞

⎠ is

not increasing since there is 2 in antidiagonal i + j = 4 (i = 3, j = 1) and a 1 in
antidiagonal i + j = 5 (i = 1, j = 4).

Lemma 2 with d = mn, fi,j = i + j and gi,j = xi,j implies that increasing
matrices are maximal and conversely:
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Lemma 3. A matrix is increasing if and only if it is maximal.

We introduce now the matrices I, J and especially I + J : the coefficients of ith

row of matrix I are equal to i. The coefficients of jth column of matrix J are
equal to j so that the coefficient of row i and column j of matrix I + J is i + j.
The matrix 2(I + J) is clearly increasing and it remains true by adding some 1
in some places:

Lemma 4. For any binary matrix B ∈Mm,n({0, 1}), the matrix 2(I + J) + B
is increasing.

Example. I =

⎛

⎝
1 1 1 1
2 2 2 2
3 3 3 3

⎞

⎠, J =

⎛

⎝
1 2 3 4
1 2 3 4
1 2 3 4

⎞

⎠, I + J =

⎛

⎝
2 3 4 5
3 4 5 6
4 5 6 7

⎞

⎠. If we choose

B =

⎛

⎝
1 0 1 1
0 1 0 1
0 1 0 0

⎞

⎠ then 2(I + J) + B =

⎛

⎝
5 6 9 11
6 9 10 13
8 11 12 14

⎞

⎠ which is increasing.

It follows from lemma 3 and 4 that any matrix A = 2(I +J)+B with a binary
B is maximal. We can notice that the coefficients belonging to the antidiagonal
i + j = k are either equal to 2k either equal to 2k + 1. Among all matrices of
P (A) (we recall that they are obtained by permutation of the coefficients), only
a few of them are increasing and it follows from the disjoined ranges [2k, 2k + 1]
of antidiagonal k in A that they differ from A only by moving the coefficients
along antidiagonals. Thus they can all be written as 2(I + J) +B′ where B′ is a
binary matrix with exactly the same number of 1s than B in any antidiagonal.
This last condition can be rewritten as T (B) = T (B′) and it proves the next
lemma:

Lemma 5. Let A = 2(I +J)+B where B is a binary matrix B ∈Mm,n({0, 1}).
A matrix A′ of P (A) is increasing if and only if A′ = 2(I + J) + B′ where B′ is
a binary matrix verifying T (B) = T (B′).

It means that if we look at the matrices A′ of P (A) (A is the sum of a binary
matrix B and 2(I +J)), only a few of them can have the same barycenter on the
same antidiagonal as A. Let us consider these matrices A′ of P (A) that barycen-
ter is on the same antidiagonal as A. As A is increasing and thus maximal, A′

should be also maximal and thus increasing. It constraints the choice of A′ to a
very restrictive set of matrices. A′ is necessarily related to A by permutations of
coefficients in each antidiagonal. In other words, a coefficient of A in antidiago-
nal k can not belong to a different antidiagonal k′ �= k in A′. It follows that A′

is of the same form than A: it can be written B′ +2(I +J) with a binary matrix
B′ verifying T (B′) = T (B).

4 Reduction

The reduction that we provide is directly inspired from [2] where a construc-
tion using barycentric optimality allows to reduce HardP. The result is the NP-
hardness of the problem of reconstruction of a 3D lattice set with a prescribed



368 Y. Gerard

number of points in the slices parallel to the planes of coordinates. Nevertheless
the NP-completeness of NewP is not a consequence of this result but, with some
work, an undirect consequence of the proof given in [2].

Let us consider an instance of HardP : we have three integer vectors RH ∈ N
m,

SH ∈ N
n and TH ∈ N

m+n−1 (index H is used in reference to HardP while letter
N is used for NewP). The first step of the reduction is the construction of an
instance of NewP : RN ∈ N

m, SN ∈ N
n and an integer matrix X0 ∈Mm,n(N).

4.1 Construction of an Instance of NewP

We decompose the construction in three steps which provide two different cases.

– The first step of the construction is to check that the condition
∑m

i=1 iri +
∑n

j=1 jsj =
∑m+n

k=2 ktk−1 is verified by the coordinates of RH , SH and TH .
This condition can be checked in polynomial time. If it is not satisfied, lemma
1 guarantees that the instance RH , SH , TH of HardP has no solution. In
this case, we construct an instance of NewP which is clearly inconsistent by
taking for instance the zero matrix as X0 and two vectors RN and SN with
at least one of their coordinates different from 0. Otherwise, we go to the
second step...

– Second step, we check the existence of a binary matrix B verifying T (B) =
TH : the binary matrix B exists if and only if the coordinates tk of the
antidiagonal sum vector do not exceed the cardinality of the antidiagonal
i + j = k + 1 namely tk ≤ k, tk ≤ m, tk ≤ n and tk ≤ m + n − k for any k
from 1 to 2n − 1. This condition can again be checked in polynomial time.
If B does not exist, the instance of HardP is not consistent. In this case, we
construct again an inconsistent instance of NewP.

– We assume now that the condition
∑m

i=1 iri +
∑n

j=1 jsj =
∑m+n

k=2 ktk−1 is
satisfied and that there exists a binary matrix B with T (B) = TH . A possible
choice for B among others is to take the matrix defined by bi,j = 1 for
i ≤ ti+j−1 +max{i+ j−n, 0} and 0 otherwise but it is of minor importance.
With this matrix B, we introduce A = 2(I + J) + B. We take this matrix
A as matrix of coefficients X0 (we construct it in polynomial time). For
the row and column sum vectors, we take RN = RH + R(2(I + J)), SN =
SH + S(2(I + J).

The row vector sum RN ∈ N
n, the column vector sum SN ∈ N

n and the
integer matrix X0 ∈ Mm,n(N) is our instance of NewP encoding the initial
instance of HardP.

Its computation can be done in polynomial time (which is a necessary con-
dition to prove NP-hardness). It remains now to prove that the consistency of
the HardP instance RH , SH , TH is equivalent to the consistency of the NewP
instance RN , SN , X0 namely that there exist a solution for one instance if and
only if there exist a solution for the other.
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4.2 Consistency of HardP Instance Implies Consistency of NewP
Instance

We assume that the HardP instance RH , SH , TH is consistent: there exists a
binary matrix Y verifying R(Y ) = RH , S(Y ) = SH and T (Y ) = TH . It follows
that we are in the last case of construction of NewP instance: RN = RH+R(2(I+
J)), SN = SH +S(2(I +J)) and a matrix of coefficients X0 = A = B +2(I +J)
where the binary matrix B verifies T (B) = TH .

We show now that the matrix X = Y + 2(I + J) is solution of the NewP
instance RN , SN and X0: we have first R(X) = R(Y ) + R(2(I + J)) = RH +
R(2(I+J)) = RN , S(X) = S(Y )+S(2(I+J)) = SH +S(2(I+J)) = SN . At last,
we have T (Y ) = T (B). Hence matrices 2(I+J)+Y = X and 2(I+J)+B = A =
X0 have exactly the same coefficients, which can be formulated as X ∈ P (X0).
We conclude that X is a solution of instance RN , SN and X0.

4.3 Consistency of NewP Instance Implies Consistency of HardP
Instance

Let us assume that there exists a matrix X solution of our instance RN , SN , X0

of NewP. Since the first and second cases of construction provide unconsistent
instances, we are necessarily in the third case of construction: a binary matrix B
with T (B) = TH exists and we have

∑m
i=1 iri +

∑n
j=1 jsj =

∑m+n
k=2 ktk−1 where

ri, sj and tk are the coordinates of RH , SH and TH . As in this case, we have
chosen X0 = A, the solution X is in P (A) and verifies R(X) = RN , S(X) = SN .

Let us consider the diagonal position of the barycenter of X or more precisely
KG(X). We are going to prove that it is equal to KG(A). As starting point, we
have R(X) = RN = R(2(I + J)) + RH and S(X) = SN = S(2(I + J)) + SH

which lead to R(X − 2(I + J)) = RH and S(X − 2(I + J)) = SH . As the
coordinates of RH and SH are respectively ri and sj , we have IG(X−2(I+J)) =∑m

i=1 iri and JG(X − 2(I + J)) =
∑n

j=1 jsj . It leads to KG(X − 2(I + J)) =
IG(X − 2(I + J)) + JG(X − 2(I + J)) =

∑m
i=1 iri +

∑n
j=1 jsj . Thus we have (i)

KG(X) = KG(2(I + J)) +
∑m

i=1 iri +
∑n

j=1 jsj

We can consider now the diagonal position of the barycenter of matrix A given
by KG(A). We have KG(A) = KG(2(I + J)) + KG(B) since A = 2(I + J) + B.
As T (B) = TH , we have KG(B) =

∑m+n
k=2 ktk−1. Hence we have (ii) KG(A) =

KG(2(I + J)) +
∑m+n

k=2 ktk−1.
We can now associate the equalities (i) and (ii) with our initial condition∑m
i=1 iri+

∑n
j=1 jsj =

∑m+n
k=2 ktk−1: we obtain KG(A) = KG(X). Lemma 4 says

that matrix A is increasing. Lemma 3 implies that A is maximal. With equality
KG(X) = KG(A) and X ∈ P (A), we have that matrix X is also maximal. It
follows again from Lemma 3 but in the converse sense that X is increasing. We
have the conditions to apply Lemma 5 with matrices X and A: matrix X is in
P (A) and X is increasing. It follows that X is the sum of 2(I + J) and a binary
matrix Y verifying T (Y ) = T (B) = TH .
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As conclusion, matrix Y = X−2(I +J) is binary and verifies R(Y ) = R(X−
2(I+J)) = RN−R(2(I+J)) = RH , S(Y ) = S(Y −2(I+J)) = SN−S(2(I+J)) =
SH , T (Y ) = TH . Thus matrix Y is a solution of instance RH , SH , TH of HardP.

4.4 Result

Based on the NP-completeness of HardP class of problems, we have proved that
reconstructing a matrix with given coefficients and with prescribed row and
column sums is NP-hard (and it is in NP):

Theorem 1. NewP class of problems is NP-complete.

5 Next Challenge

We have proved that given an integer matrix X0, a row sum and a column
sum vector, it is NP-hard to know whether there exist a permutation of the
coefficients of X0 providing the given line sums. If the matrix X0 is binary, there
are only 0s and 1s to put in the right place: we are in the framework of classical
Gale-Ryser problem and this subclass of problems can be solved in polynomial
time. It leads of course to the question: what happens if we consider a matrix
with only 0s, 1s and 2s ? More generally, what is the complexity of the subclass
Sk of problems where the coefficients of matrix X0 are integers between 0 and
k. We know hat S1 is polynomial and a challenge would be to determine the
complexity of classes Sk for k > 1.
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Abstract. Nonograms, also known as Japanese puzzles, are logic puz-
zles that are sold by many news paper vendors. The challenge is to fill a
grid with black and white pixels in such a way that a given description
for each row and column, indicating the lengths of consecutive segments
of black pixels, is adhered to. Although the Nonograms in puzzle books
can usually be solved by hand, the general problem of solving Nonograms
is NP-hard. In this paper, we propose a local reasoning framework that
can be used to deduce the value of certain pixels in the puzzle, given a
partial filling. By iterating this procedure, starting from an empty grid, it
is often possible to solve the puzzle completely. Our approach is based on
ideas from dynamic programming, 2-satisfiability problems, and network
flows. Our experimental results demonstrate that the approach is capa-
ble of solving a variety of Nonograms that cannot be solved by simple
logic reasoning within individual rows and columns, without resorting
to branching operations. Moreover, all the computations involved in the
solution process can be performed in polynomial time.

1 Introduction

A Nonogram, also known as a Japanese puzzle in some countries, is a kind of logic
puzzle, where the goal is to draw a rectangular image that adheres to certain row
and column constraints. Usually, the image is black-and-white, although Nono-
grams with more than two grey values exist as well. Fig. 1 shows an example of
a Nonogram. The puzzle has a rectangular shape, which is subdivided in unit
cells. We will also refer to these cells as pixels. For each row and each column,
a description is given. The description indicates the length of the consecutive
segments of black pixels along the corresponding line. For example, the descrip-
tion “1, 1” in the first row indicates that when traversing the pixels in that row
from left to right, there should first be zero or more white pixels, followed by
one black pixel. Then, at least one white pixel must occur, followed by exactly
one black pixel. There may be additional white pixels at the end of the line. The
symbol ε denotes the empty description, leading to an all white line. The goal

V.E. Brimkov, R.P. Barneva, H.A. Hauptman (Eds.): IWCIA 2008, LNCS 4958, pp. 372–383, 2008.
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1, 1

ε

1, 1

3

1 1, 1 1 1, 1 1

0 1 0 1 0

0 0 0 0 0

x x 0 x x

x x 1 x x

� �

� �

� � �

Fig. 1. A simple 4×5 Nonogram: a) original puzzle; b) partial solution (1 = black, 0
= white, x = yet unknown); c) final solution (dots denote black pixels)

of the puzzle is to colour all pixels with either black or white, in such a way
that each horizontal and vertical line is consistent with the given description.
As we shall see later, when using only information concerning single rows and
columns, puzzles can often be solved partially (see the picture in the middle).
For instance, one can infer that the middle pixel in the bottom row must be
black. Using 2-satisfiability (2-SAT) rules we can completely solve this simple
puzzle. More complicated puzzles require more sophisticated techniques, as we
will also demonstrate.

Nonograms can be considered as a generalization of a well-known problem
in Discrete Tomography: reconstructing hv-convex sets (where the black pixels
in each row and column must be consecutive). For this Discrete Tomography
problem, the description for each line consists of a single number, indicating
the length of the segment of black pixels along that line. The problem of recon-
structing hv-convex polyominoes can be solved in polynomial time [6,2], whereas
the reconstruction problem for general hv-convex sets is NP-hard [9]. Therefore,
the reconstruction problem for Nonograms is also NP-hard (and, clearly, NP-
complete). In [8] this is shown through the more general concept of parsimonious
reductions.

The Nonogram problem can also be related to several job scheduling problems,
where each row corresponds to a single processor and the jobs for the processors
are indicated by the row descriptions. In such scheduling problems, the type of
constraints that occur in Nonograms only apply to the rows, or the columns, but
not both.

There can be considerable differences in the difficulty level of Nonograms. On
the one hand, the Nonograms that appear in newspapers can typically be solved
by applying a series of simple logical rules, each of which considers only a single
horizontal or vertical line. Later on we will refer to them as being simple. These
puzzles will always have a unique solution. On the other hand, large random
puzzles can be very difficult to solve, even using a computer, and may have
many different solutions. Clearly, the fact that solving Nonograms is NP-hard
indicates that not all puzzles can be solved using simple logic reasoning.

Although several implementations of Nonogram solvers can be found on the
Internet (see [7] for a list of solvers), we have not found studies of this problem in
the scientific literature. In [4], an evolutionary algorithm is described for solving
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Nonograms. Although this algorithm is quite effective at solving Nonograms, it
cannot be used to find all solutions, if more than one solution exists.

In this paper we propose a local reasoning framework for solving Nonograms.
By applying logical rules, which may involve information from several rows and
columns, the value of certain unknown pixels can be deduced. By iterating this
procedure, starting from an empty grid, it is often possible to either solve the
puzzle completely or to determine a substantial part of the pixels. In the latter
case one can distinguish between situations where there exist different solutions
(that can sometimes be enumerated), and situations where one cannot infer
anything anymore.

The paper is organized as follows: Section 2 introduces Nonograms in a formal,
somewhat more general context; in Section 3 we show solutions to some relaxed
versions (i.e., single lines, and the Discrete Tomographyversion); we combine these
techniques into a general framework in Section 4 and Section 5, also incorporating
2-SAT rules; experiments are shown in Section 6; Section 7 concludes.

2 Notation and Concepts

We first define notation for a single line (i.e., row or column) of a Nonogram.
Put Σ = {0, 1}. The symbols “0” and “1” represent the white (0) and black (1)
pixels in the puzzle. In addition, we introduce a special symbol, “x”, indicating
that a pixel is not decided yet. Put Γ = {0, 1, x}. For � ≥ 0, let Σ� (resp. Γ �)
denote the set of all strings over Σ (resp. Γ ) of length �.

For describing a Nonogram, we introduce more general concepts of row and
column descriptions, such that Nonograms are in fact a special case. Most of the
concepts in this paper can be applied to all logic problems that follow the more
general definitions.

A description d of length k > 0 is an ordered series (d1, d2, . . . , dk) with dj =
σj{aj , bj}, where σj ∈ Σ and aj, bj ∈ {0, 1, 2, . . .} with aj ≤ bj (j = 1, 2, . . . , k).
Let Dk denote the (infinite) set of all descriptions of length k, and put D =
∪∞k=0Dk, where D0 consists of the empty description ε. A single dj = σj{aj , bj}
is called a segment description. The perhaps somewhat confusing curly braces
are used here in order to stick to the conventions from regular expressions; so, in
σj{aj , bj} they do not refer to a set, but to an ordered pair. We will sometimes
write σ∗ as a shortcut for σ{0,∞} (for σ ∈ Σ) and σ+ as a shortcut for σ{1,∞},
where∞ is suitably large number. And finally, we put σa as a shortcut for σ{a, a}
(a ∈ {0, 1, 2, . . .}), and we sometimes omit parentheses and commas; also σ0 is
omitted.

A finite string s over Σ adheres to a description d (as defined above) if s first
has between a1 and b1 σ1s (boundaries included), then between a2 and b2 σ2s,
. . . , and ends with between ak and bk σks. Example: again take Σ = {0, 1}, and
assume that the description is

(0{0,∞}, 1{a1, a1}, 0{1,∞}, 1{a2, a2}, 0{1,∞}, . . . , 1{ar, ar}, 0{0,∞}).
This is precisely the Nonogram-type description a1, a2, . . . , ar for a line (row or
column). Note that it has length 2r + 1 and can also be written as
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(0∗, 1a1 , 0+, 1a2 , 0+, . . . , 1ar , 0∗) = 0∗1a10+1a20+ . . . 1ar0∗.
We denote the set of all Nonogram-type descriptions by Dnonogram ⊆ D. In the
sequel we will concentrate on this type of description.

Suppose we have a string s over Γ . If zero or more xs are replaced with
elements from Σ, the resulting string is called a specification of s. A specification
to a string over Σ (i.e., no longer containing any “x” symbols) is called a complete
specification or fix. If a string s has a fix that adheres to a given description d, s
is called fixable with respect to d. The boolean function Fix (s, d) is true if and
only if s is fixable with respect to d.

A Nonogram description N consists of m > 0 row descriptions r1, r2, . . . , rm ∈
Dnonogram and n > 0 column descriptions c1, c2, . . . , cn ∈ Dnonogram. A partial
filling is a m×n matrix over Γ . The set of all these partial fillings is denoted by
Γ m×n; its elements can also be considered as strings of length m×n. If such a
filling contains no xs, it is called a complete filling or full fix. A complete filling
F adheres to the Nonogram description N if the ith row of F adheres to ri (for
all i = 1, 2, . . . , m) and the jth column of F adheres to cj (for all j = 1, 2, . . . , n).
We generalize the concepts of specification, fix and fixable in the natural way.

3 Partial Solution Methods

In this section we study two relaxations of the original problem. In Section 3.1
we confine the puzzle to a single line. In Section 3.2 we only require that the
total number of black pixels in each line (i.e., row or column) adheres to its
description. Clearly, any pixel that can only have a single value in all solutions
of the relaxation, must also have this same value in any solution of the complete
Nonogram. For both relaxations we show that such pixels can be found efficiently.

3.1 Solving a Single Line

We will now describe a recursive algorithm to decide fixability for a single line.
This algorithm can be implemented by dynamic programming. First we intro-
duce some notations. For a string s = s1s2 . . . s� of length � over Γ we de-
fine its prefix of length i by s(i) = s1s2 . . . si (1 ≤ i ≤ �), so s = s(�); s(0)

is the empty string. Similarly, for a description d = (d1, d2, . . . , dk), we put
d(j) = (d1, d2, . . . , dj) for 1 ≤ j ≤ k, so d = d(k); d(0) = ε is the empty descrip-
tion. Furthermore, let Aj =

∑j
p=1 ap and Bj =

∑j
p=1 bp; put A0 = B0 = 0. We

note that a string of length � < Ak is certainly not fixable with respect to d,
simply because it has too few elements; similarly, a string of length � > Bk is not
fixable with respect to d. Finally, for a given string s of length �, let Lσ

i (s) denote
the largest index h ≤ i such that sh �= σ and sh �= x, if such an index exists,
and 0 otherwise (σ ∈ Σ, 1 ≤ i ≤ �). We will put Fix (i, j) = Fix (s(i), d(j)), and
are interested in Fix (�, k). As boundary values we note that Fix (0, j) = true if
and only if Aj = 0 (j = 0, 1, 2, . . . , k); and Fix (i, 0) = false for i = 1, 2, . . . , �
(by the way, these last values are never used). We clearly have Fix (i, j) = false
if i < Aj or i > Bj (0 ≤ i ≤ �, 0 ≤ j ≤ k), as indicated above.
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Our main recursion is:

Fix (i, j) =
min(i− aj , Bj−1)∨

p = max(i− bj, Aj−1, L
σj

i (s))

Fix (p, j − 1) (1)

This holds for i and j with 1 ≤ i ≤ �, 1 ≤ j ≤ k and Aj ≤ i ≤ Bj . Note that an
empty disjunction is false; this happens for example if L

σj

i (s) ≥ i− aj + 1. For
j = 1 we have Fix (i, 1) = true if and only if Lσ1

i (s) = 0.
The validity of the recursion can be shown as follows. The last part of s(i) must

consist of between aj and bj σjs, say we want σjs at positions p + 1, p+ 2, . . . , i.
We then must have aj ≤ i−p ≤ bj . Also note that all elements sp+1, sp+2, . . . , si

must be either x or σj ; this holds exactly if L
σj

i (s) ≤ p. Finally, the first part
of s(i), i.e., s(p), must adhere to d(j−1). Clearly, p must be between Aj−1 and
Bj−1, otherwise this would not be possible. Note that the Aj and Bj represent
general tomographic restrictions, in some sense.

It is natural to implement this recursive formula by means of dynamic pro-
gramming, using lazy evaluation: once a true Fix (p, j − 1) is found, the others
need not be computed.

Now given a string s over Γ that is fixable with respect to a description d, it
is easy to find those string elements x that have the same value from Σ in every
fix: these elements are then set at that value. Indeed, during the computation
of Fix (s, d) (which of course yields true), one can keep track of all possible
specifications that lead to a fix. In Equation (1) those Fix (p, j − 1) that are
true correspond with a fix, where the string elements sp+1, sp+2, . . . , si are all
equal to σj . Now one only has to verify, for each string element of s, whether
precisely one element from Σ is allowed. In practice this can be realized by using
a separate string, whose elements are filled when specifying s, and where those
elements that are filled only once are tagged. Note that for this purpose lazy
evaluation is not an option, since we need to examine all fixes. As an example, if
the description for a five character string s = s1s2s3s4s5 over {0, 1, x} is 0∗130∗

(cf. the bottom row from the example in Section 1), one can derive that s3 must
be equal to 1. The algorithm that performs this operation is called Settle, and
the resulting string s′ is denoted by s′ = Settle(s, d).

The complexity of the computation of Fix (�, k) is bounded by k · �2, and is in
practice, especially when using lazy evaluation, much lower.

3.2 Discrete Tomography Problem

The Nonogram problem can be considered as a special case of a well-known
problem from Discrete Tomography (DT), which deals with the reconstruction
of a binary image from its horizontal and vertical linesums. These horizontal
and vertical linesums can be easily computed from the Nonogram descriptions,
by adding the segment descriptions for each line. (In the more general setting
from Section 2 we get lower and upper bounds for the linesums.) Suppose that
we have a partially filled Nonogram X ∈ Γ m×n, which we would like to extend
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Fig. 2. a) DT problem and one of its solutions, where bold figures denote the linesums;
b) associated network of the DT problem

further. Clearly, any solution of the Nonogram must also be a solution of the
corresponding DT problem. The DT problem can be solved in polynomial time,
even if an arbitrary subset of the image is kept fixed. It is also possible to
compute the set of all pixels that must have the same value in all solutions of
the DT problem in polynomial time. These pixels can be fixed immediately in
the partial Nonogram solution. The paper [1] gives a constructive procedure for
finding all such pixels.

Extendibility to a solution of the DT problem can easily be checked using
network flow methods. We refer to [3] for the details of this model. Fig. 2a
shows a simple 3×3 DT problem. We put linesums to the right of the rows
and below the columns, to distinguish them from our earlier descriptions. This
problem can be modelled as the transportation problem in Fig. 2b, which can
be solved efficiently by network flow methods; thick arcs denote the solution. If
none of the pixels are fixed, each pixel arc has a capacity of one. To fix a pixel
at value v ∈ {0, 1}, we simply set the capacity of the corresponding pixel arc to
0 and subtract/add v to the surplus/demand at the corresponding column and
row nodes. The resulting transportation problem has a solution if and only if the
partial filling can be extended to a complete filling satisfying the DT constraints.

4 Combining the Partial Methods Using 2-SAT

The method from Section 3.1 can only take into account the description of a sin-
gle line. On the other hand, the discrete tomography approach from Section 3.2
can deal with all lines simultaneously, but only incorporates partial knowledge
from the descriptions. We will now describe how the information from different
lines, and from different relaxations of the Nonogram problem, can be combined.

Consider the example in Fig. 3a (which is the same as that from Fig. 1).
Using only the information from single lines, or from the discrete tomography
problem, the values of the remaining undecided pixels cannot be derived. Four
of the undecided pixels are denoted by the variables a, b, c and d respectively,
which can take the values 0 (false) or 1 (true).

Using the partial solution methods, dependencies can be derived between pairs
of undecided pixels. For example, on the bottom row, the description dictates
that c ⇒ d (or, equivalently, ¬c ∨ d). Similarly, one can deduce that c ⇒ ¬a
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(first column), ¬a ⇒ b (third row) and b ⇒ ¬d. This provides us with both
implications c⇒ d and c⇒ ¬d, resulting in the conclusion that c must be 0.

Note that any such implication relation between two variables can be written
in one of the forms x ∨ y, x ∨ ¬y, ¬x ∨ y or ¬x ∨ ¬y. This is the standard
form of a 2-SAT clause, see [5]. The 2-SAT problem is to decide whether or
not there exists an assignment of truth values to all the variables, such that a
given conjunction of such clauses is simultaneously satisfied. It can be solved in
polynomial time, using the concept of a dependency graph, as shown in Fig. 3
for our simple example.
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Fig. 3. a) Partially solved Nonogram; b) (part of) its corresponding dependency graph

However, when solving a Nonogram, the goal is not to find an assignment of
all variables that satisfies the 2-SAT constraints. Rather, we search for variables
that must have the same truth value in all satisfying assignments. Assume that
at least one such assignment exists. Then a variable x is false in all satisfying
assignments if and only if there is a path from x to ¬x in the dependency graph.
Alternatively, x must be true in all satisfying assignments if and only if there
is such a path from ¬x to x.

This provides a polynomial-time algorithm for finding all variables that must
have the same value in all satisfying assignments of the 2-SAT problem. In the
example from Fig. 3a, many more 2-SAT clauses can be found from the single
rows and columns, or from the discrete tomography problem.

Our procedure for combining the information from the subproblems (one for
each line, and a complete DT problem) is as follows: for each pair of undecided
pixels (x, y) involved in the subproblem, all four assignments are tested. For each
assignment, a fixability test is performed. Each such test that returns false
provides an additional 2-SAT clause (e.g., x ∨ ¬y). The resulting dependency
graph captures information from all subproblems simultaneously. If one considers
this process as “guessing”, it can also be performed in a way similar to the Settle
operation. Indeed, when computing the Fix value for a line, one can keep track
of all pairs of pixels, and determine those values of pairs that cannot occur.

Although the 2-SAT approach is a powerful way to combine the knowledge
from different partial problems, it generally does not capture all information
that is present. For example, the three character string s over {0, 1, x} with
description d = 0∗110∗ yields rules that do not forbid the fix 000, which is not
a good fix. If one introduces clauses that can involve three variables, this leads
to a clause s1 �= 0 ∨ s2 �= 0 ∨ s3 �= 0, which is in 3-SAT format. The general
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3-SAT problem is NP-hard. Therefore, we chose the 2-SAT model, for which
polynomial-time algorithms can be used.

5 Iterative Solving of Nonograms

Each relaxation of the Nonogram problem, such as the single line and discrete to-
mography relaxations from Section 3, can be used to deduce the value of certain
pixels. By using such methods iteratively, filling in the new known pixels in each
iteration, it is often possible to deduce even more pixel values. For clearness’ sake,
we now focus on the iterative application of the Settle operation from Section 3.1.
It can be combined with alternative relaxations to form a more complete iterative
algorithm. The Settle operation produces, given a string s over Γ and a descrip-
tion d, the string where all string elements that have the same value in every
fix are set: s ← Settle(s, d). Given X ∈ Γ m×n and a Nonogram description N ,
we can repeat the Settle operation for all rows and columns of X (using the ap-
propriate descriptions from N) until no new, previously unknown pixels are set.
Note that we can use several heuristics to determine the order in which lines are
examined. This operation is called FullSettle: X ← FullSettle(X, N) ∈ Γ m×n.
If X now happens to be in Σm×n, the puzzle is solved. Such a puzzle is called
simple.

Note that the Settle operation, or rather the induced Fix operations, can also
be used to detect certain contradictions, i.e., unsolvable puzzles. Indeed, if some
line s of a proposed solution satisfies Fix (s, d) = false, this solution cannot be
completed.

Now, given X ∈ Γ m×n and a Nonogram description N such that X =
FullSettle(X, N), we can harvest 2-SAT expressions, leading to a 2-SAT prob-
lem Π , and set all elements from X that have the same value in all solutions to
Π as in Section 4. This operation is called 2SATSolve: X ← 2SATSolve(X, N).
The operations FullSettle and 2SATSolve can be intertwined, until no further
progress is made; this combination is called Solver0 : X ← Solver0 (X, N). Again,
if the resulting X happens to be in Σm×n, the puzzle is solved. Such a puzzle is
called 0−Solvable . Note that this whole process takes polynomial time (expressed
in height and width of the puzzle).

Now suppose that X = Solver0 (X, N), but the puzzle is not solved yet. We
now consider one unknown element Xij from X . In a copy Y of X we try both
Yij = 0 and Yij = 1. If for one of these Solver0 (Y, N) gives a contradiction, we
know that Xij must have the other value. We can, again in some heuristic order,
examine all unknown pixels. Note that only those pixels that occur in a 2-SAT
clause need to be examined. This procedure can be repeated, until no further
progress is made, again intertwined with the use of Solver0 . This procedure is
called Solver1 . If a Nonogram can be solved in this way, it is called 1−Solvable .

This process can be repeated with respect to the depth of the “tries”, and it
can then solve any Nonogram. In this way, we could define k−Solvable. Indeed, we
then basically implement full backtracking. However, for our current purposes we
only allow for (in depth!) one try, thereby inferring polynomial time complexity.
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Fig. 4. Partially solved 5×5 Nonogram, where the fact that pixel x must be white (0)
is hard to infer

So several tries are possible, but at each moment at most one pixel is currently
“tried”.

To summarize these efforts, Nonograms can be simple (if FullSettle solves
them), 0−Solvable (if Solver0 solves them), 1−Solvable (if Solver1 solves them),
or more complicated. Many puzzles from newspapers are simple; the example
from Fig. 1 is 0−Solvable. Also note that FullSettle, Solver0 and Solver1 are
capable of providing partial solutions. It is possible to define the difficulty level
of a Nonogram as the minimum number of tries necessary to solve it. The puzzle
from Fig. 1 has level 1.

There are relatively small Nonograms for which Solver1 cannot make any
progress, even though it is still possible to infer the value of certain pixels. In
Fig. 4 we show an example of such a Nonogram, where one can prove that the
rightmost pixel in the third row must be white, yet Solver1 fails to infer the
value of any more pixels.

6 Experimental Results

We will describe several experiments with the techniques from the previous sec-
tions. All considered puzzles will have at least one solution: the image that was
used to construct the puzzle. We mention the observation that in our experience
most puzzles from newspapers are of simple type. Although one could attribute
this to the relatively small size of these puzzles, this is contradicted by the exam-
ple from Fig. 1, which shows that small puzzles do not have to be of simple type.
Nevertheless, the larger the puzzle, the more complicated it can be. All puzzles
of simple type can be solved very fast using our proposed framework, as the
operation described in Section 3.1 effectively captures all information contained
in the description of each single horizontal or vertical line.

As an illustrative example for a more difficult puzzle, we mention the 30×30
Nonogram from Fig. 5. It was randomly generated with 50 % black pixels. Using
only FullSettle just 11 pixels are found. Using Solver0 (which only takes ap-
proximately one second on a modern PC), the puzzle is solved but for 15 pixels.
One can verify that there are 6 different solutions, where it turns out that for
all 15 unknown pixels both black and white can occur. This Nonogram was also
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Fig. 5. Randomly generated partially solved 30×30 Nonogram, with 50 % black pixels;
the 15 small dots denote the unknown pixels; 6 solutions
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Fig. 6. Randomly generated partially solved 40×40 Nonogram, with 881 black pixels;
the 4 small dots denote a pure switching component, leading to 2 solutions

included in [4], where an evolutionary algorithm was used to find one of the
six solutions. A clear advantage of our reasoning framework over the algorithm
presented in the former paper is that our approach finds the set of all solutions,
along with a proof that there are no others. In addition, our method is much
faster: seconds versus hours. On the other hand, both approaches can be con-
sidered as complementary, as the evolutionary algorithm can sometimes find a
solution that cannot be deduced using our reasoning approach.

Most descriptions can be deduced from the figure. The description of row 1
is: 1, 8, 2, 1, 3, 2, of row 2: 7, 2, 2, 1, 1, 2, 2, of row 4: 2, 1, 4, 1, 2, 3, 1, 1, 1 and of row
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Fig. 8. a) Average number of unsolved pixels with standard deviation, for randomly
generated 30×30 puzzles, with different percentages of black pixels; b) idem, for differ-
ent sizes, with a fixed percentage of 50 %

9: 3, 1, 4, 1, 1, 4, 1; the descriptions of the last 6 columns are: 2, 4, 1, 1, 3, 1, 1, 1;
1, 3, 1, 2, 2, 1, 1, 2, 3; 1, 1, 1, 2, 2, 1, 1, 1, 1, 1; 1, 1, 1, 3, 2, 1, 1, 3, 3; 1, 1, 2, 1, 1, 4, 3, 1,
2; and 1, 1, 1, 1, 1, 3, 5, respectively.

In Fig. 6 we see a randomly generated 40×40 Nonogram, with 881, i.e., 55 %,
black pixels. In this case the puzzle has a nearly unique solution: there is only
one pure 2×2 switching component (cf. Fig. 7), so there are 2 different solutions.
The descriptions can be deduced from the figure. Again, Solver0 is necessary:
FullSettle finds 101 pixels.

In Fig. 8a we see the results of 7,000 runs. For each p in {1, 2, 3, . . . , 70} the
algorithm has been run 100 times on a randomly generated 30×30 puzzle, with
p % black pixels. The piecewise linear curve connects the averages of the number
of unsolved pixels (at most 900); also plotted is the standard deviation per per-
centage, truncated at 0 and 900. For small and large percentages the puzzles are
solvable, in some cases leaving small switching components (cf. Fig. 5). Finally
in Fig. 8b we plot, for each size s in {1, 2, 3, . . . , 50} these same quantities for
randomly generated square s×s puzzles, all with 50 % black pixels. The smooth
curve depicts the total number of pixels, i.e., s2.

7 Conclusions

The general Nonogram problem is known to be NP-hard. However, it appears
that in practice many instances can be solved quickly. In this paper we presented
a general framework for solving Nonograms. By combining several relaxations,
that can each be solved in polynomial time, a solution of the Nonogram is com-
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puted iteratively. The different solution methods are combined using a 2-SAT
formulation. We demonstrated that this approach can solve a variety of interest-
ing Nonograms. More importantly, the algorithm generates a logical proof for all
pixels that are decided. Even if the puzzle cannot be solved completely, it may
still be still be possible to decide the value of a substantial part of the pixels. The
class of Nonograms that can be solved effectively using our approach includes
the simple puzzles that can be found in puzzle books, but also includes random
puzzles, which can often not be solved by simple logic reasoning, considering one
line at a time.

Our framework is quite general. For example, as indicated in Section 2, the
concept of a description can be generalized in a straightforward manner. In
future work, we intend to study several such generalizations.
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Abstract. This paper deals with a memetic algorithm for the recon-
struction of binary images, by using their projections along four direc-
tions. The algorithm generates by network flows a set of initial images
according to two of the input projections and lets them evolve toward
a solution that can be optimal or close to the optimum. Switch and
compactness operators improve the quality of the reconstructed images
which belong to a given generation, while the selection of the best image
addresses the evolution to an optimal output.1

1 Introduction

Discrete tomography (DT) is a particular case of computerized tomography that
deals with structures which have a few internal density values (usually a couple),
and sometimes it is possible to reduce the number of projections. Fundamental
works on discrete tomography have been reported in [12]. In this contribution
we will consider only the reconstruction of binary images, which correspond to
just a couple of density values.

It has been proved that it is possible to state in polynomial time whether there
exists any object compatible with a given pair of projections [10,20]; vice versa,
if we consider a bigger set of projections, the complexity increases because the
image must satisfy a greater number of constraints. For example, the complexity
of the reconstruction process becomes NP-hard in the case of at least three
projections along non parallel directions [11]. Moreover, the number of images
compatible with a couple of projections is normally huge because they can be
very different from each other [21]. Therefore, the exact reconstruction requires
additional information: not only a big enough number of projections, but also
the geometric and topological properties of the object [15].

The algorithm presented here tries to reconstruct binary images that satisfy
four projections, by creating an initial population through network flows. This
1 This work makes use of results produced by the PI2S2 Project managed by the Con-

sorzio COMETA, a project co-funded by the Italian Ministry of University and Re-
search (MIUR) within the Piano Operativo Nazionale “Ricerca Scientifica, Sviluppo
Tecnologico, Alta Formazione” (PON 2000-2006). More information is available at
http://www.pi2s2.it and http://www.consorzio-cometa.it.

V.E. Brimkov, R.P. Barneva, H.A. Hauptman (Eds.): IWCIA 2008, LNCS 4958, pp. 384–395, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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population reaches the desired solution through particular operators. Sect. 2 in-
troduces the reconstruction methods present in literature and our new approach;
basic notations are described, too. Experimental results are presented in Sect. 3,
while Sect. 4 reports conclusions, future progresses and possible applications.

2 A Memetic Reconstruction Method

Usually, DT reconstruction algorithms are developed to process particular im-
ages such as hv-convex polyominoes, which are connected sets with 4-connected
rows and columns, and periodic images [9], which have repetitions of pixels along
some directions.

A well known reconstruction algorithm of hv-convex polyominoes is based on
the filling of empty parts of the images and is taken back to the satisfiability of
Boolean formulas; its time complexity is O(mn min{m2, n2}) though it does not
guarantee the accuracy of the final result [2,5,14]. In the case of noisy projections
affected by quantization and instrumental errors, a quantitative estimate of the
stability of these methods has been proposed in [7]. A memetic approach uses
two projections and proper operators on noiseless images [3]. This last work
differs from our method both on the number of projections and on the operators
used. For example, the individuals obtained by crossover and mutation have to
be further processed in order to verify the input projections. These evolutionary
operators are performed with probabilities that are automatically tuned for each
generation according to the fitness values of the previous generation. Moreover,
a hash table is used to apply all possible switches on the current individual.

Memetic algorithms [18] (MAs) were introduced in 1989 and belong to the
class of evolutionary algorithms which explore the solutions space of the prob-
lem by the generation of proper agents and the application of cooperative and
competitive operations [6]. MAs use a fitness function to evaluate the quality of
the agents, optimization operators to improve each single agent and a selection
process to direct the whole population toward an optimal solution. Therefore,
MAs induce a vertical evolution (between consecutive generations) and an hori-
zontal evolution (within the same generation). These methods have been proved
to be efficient in solving a variety of tasks such as the traveling salesman prob-
lem [22], the quadratic assignment problem [16] and the graph bi-partitioning
problem [17].

2.1 Basic Notations

A binary image I of size n×m can be stored as a matrix A={aij} with ele-
ments equal to 0, if the corresponding pixel in I is black (i.e. it belongs to the
background), or equal to 1, if the pixel is white (i.e. it belongs to the foreground).

Given a direction v ≡ (r, s) with r, s∈Z and |r|+|s| �= 0, we define the pro-
jection line of A through aij along v the subset of A:

�v(i, j)={ai′j′ ∈A : i′= i+zs, j′=j−zr with z∈Z}.
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By varying aij ∈A, we obtain t(v) <∞ distinct projection lines parallel to v,
each one indicated with Lv

k , where k = 1, . . . , t(v).
Let us define the k-th projection of A along v as:

pv
k =

∑

aij∈Lv
k

aij .

Informally, pv
k coincides with the number of 1’s on Lv

k . The projection of A along
v is therefore the vector:

Pv =
(
pv
1 , pv

2 , . . . , pv
t(v)

)
.

In order to simplify the method, we chose the following four directions in our
projections:

v1≡(1, 0), v2≡(0, 1), v3≡(1, 1), v4≡(1,−1).

An example of image together with its projections along the horizontal and
vertical directions (v1 and v2 respectively) can be found in Fig. 1a-b.

It could be that no object exists compatible with a given set of projections.
For example, there is no image that simultaneously satisfies Pv1

= (4, 4, 3, 1) and
Pv2

= (2, 2, 4, 4). We assume, in the following, that the projections are satisfied
by at least one image.

2.2 The Proposed Method

The memetic algorithm presented here takes the projections Qv
i

of the image to
be reconstructed as input. It creates an initial population of agents by using their
corresponding network flows (see next Sect. 2.4). Should the solution be already
present in this population, then the algorithm ends, otherwise it continues with
a new generation. Each one of them starts with the application of vertical and
horizontal crossovers between random pairs of agents; just a couple of agents are
selected among the parents and their four descendants and subsequently muta-
tion and compactness are applied if they enhance the agents. A switch operation
further improves the quality of the agents soon after these three operators (i.e.
crossover, mutation and compactness). At the end of this process, the algorithm
checks if it has already found a solution or if it has to continue with a successive
generation. Anyway, a halt condition is established by the total number ng of
generations.

We will see that each agent always maintains the same number of white pixels
as the image to be reconstructed; moreover, the continuous selection of the best
agents makes the size of the population constant. The choice of the operators
and their order of application has been obtained on an experimental basis, by
considering a variety of combinations on a training set containing only 20% of the
whole database. We want to stress that, unlike the genetic algorithms and the
method proposed in [3], our algorithm always applies the crossover, mutation,
compactness and switch techniques.
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2.3 Fitness Function

Given two projections Pv and Qv, let us consider their l1 distance:

l1(Pv, Qv) =
t(v)∑

k=1

∣
∣pv

k − qv
k

∣
∣.

By representing an agent with its corresponding binary matrix A, we define its
fitness function as:

F(A) =
4∑

i=1

l1(Pv
i
, Qv

i
),

where Pv
i

is the projection of A and Qv
i

is the input projection, both taken
along the same direction v

i
. The goal of the algorithm is the minimization of F .

2.4 Initial Population

A convenient representation of I is given by the network flow G with one source
S, one sink T and two layers of arcs between S and T : the first layer of row-nodes
{R1, R2, . . . , Rm} and the second one of column-nodes {C1, C2, . . . , Cn}. Each

arc
�

XY of G has a flow:

f �
SRi

=p
v1
i , f �

RiCj

=aij , f �
CjT

=p
v2
j

and capacity:
c �
SRi

= p
v1
i , c �

RiCj

= 1, c �
CjT

= p
v2
j

where i=1, . . . , m and j=1, . . . , n (see Fig. 1c). It is noteworthy that in order to
construct the network flow we consider only the directions v1 and v2. Moreover,
the maximal flow through G corresponds to an image that satisfies Pv1

e Pv2
[1].

The Ford-Fulkerson algorithm [8] can be applied to compute the maximal
flow of the network. Anyway, we do not act a breadth first search to find the
augmenting paths, but we randomly select those arcs which have the biggest
residual capacity; this does not guarantee a maximal flow, but assures a vari-
ability in the initial population and speeds up the whole method. Should the
flow not be maximal, then white pixels are randomly added to the image so as
to reach the correct number w of white pixels that must be present in the input
image (this amount of pixels is equal to the integral of any projection).

2.5 Crossover

Our crossover can be applied vertically or horizontally: we define here the former,
while the latter just operates on the transpose of the matrices. Given two parents
A1 and A2, their vertical offsprings B1 and B2 are obtained by swapping the
columns A

(j)
1 and A

(j)
2 , where j corresponds to the positions of 1 in a random

binary mask M = (M1, M2, . . . , Mn) (see Fig. 2):
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Fig. 1. A binary image (a) and its matrix representation (b). The projection lines
�v2 (3, 2) and �v2 (4, 2) are equivalent because they intercept the same pixels (marked

by the circles). The dashed arcs
�

RiCj in the network flow indicate black pixels; the
remaining arcs correspond to white pixels (c).

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Fig. 2. Two parents (left) and their vertical offsprings, obtained through the mask
M = (0, 0, 1, 0, 1, 1, 1, 0, 1, 0) represented by the arrows (right)

B
(j)
1 =

⎧
⎪⎨

⎪⎩

A
(j)
1 if Mj =0

A
(j)
2 if Mj =1

and B
(j)
2 =

⎧
⎪⎨

⎪⎩

A
(j)
2 if Mj =0

A
(j)
1 if Mj =1

It must be noted that the vertical (horizontal) crossover maintains the vertical
(horizontal) projection Pv2

(Pv1
).

2.6 Mutation

Mutation modifies no more than ρ=min{�m×n
20 �, m×n−w, w} pixels, which cor-

respond at most to 5% of the image. This threshold has been experimentally de-
termined since it returns better fitness values. The operator locates κ≤ρ white
and κ black pixels in a random fashion and inverts their color (see Fig. 3).

2.7 Switch

The switch operator maintains both the horizontal and vertical projections, while
swapping the values of two pairs of pixels. The elementary switch operator on A
swaps aij with aik and ahj with ahk, where the following constraint must hold:
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Fig. 3. The mutated image (left) has been obtained by swapping the pixels depicted
by the crosses (right)

{
aij = ahk = 1
aik = ahj = 0 or

{
aij = ahk = 0
aik = ahj = 1

As in Fig. 4, this operation swaps two compatible arcs
�

RiCj and
�

RhCk in the

network flow G of A so that Ri �=Rh, Cj �=Ck and both
�

RiCk and
�

RhCj do not
already belong to G.

An exhaustive search of compatible arcs
�

RiCj and
�

RhCk has a time com-
plexity equal to O(min{m×n2, n×m2}), but usually we do not have to explore
the whole space because, by permuting the rows or the columns, we find their
proper combination after just a few iterations. The projections Pv1

and Pv2
are

maintained, while generally Pv3
and Pv4

change their values.
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Fig. 4. Net representation of an elementary switch. The swapped arcs have been
marked in gray.
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Notice that any couple of images that satisfy the same set of two projec-
tions can be transformed one into each other by a finite sequence of elementary
switches [13,19].

2.8 Compactness Operator

The algorithm till now described is suitable to reconstruct objects with more
components and holes, even without a priori information. Nevertheless, the image
to be reconstructed generally does not have isolated pixels, where a pixel is called
isolated if it is surrounded by 8 pixels with opposite color.

The compactness operator usually speeds up the convergence of the memetic
algorithm and improves the result by locating and eliminating as many isolated
pixels as possible. Let σ = min{w′, b′}, where w′ and b′ are the number of isolated
white and black pixels, respectively. The operator randomly locates σ isolated
white pixels and σ isolated black pixels and sets their values to the value of their
neighbors (see Fig. 5).

Fig. 5. Three isolated white pixels and two isolated black pixels (crosses) and their
neighborhoods (circles) are present in this example. Only two of such white pixels have
been randomly swapped with the isolated black pixels.

3 Database and Experimental Results

Though only the projections of the input image I will be available in real cases,
to evaluate the robustness of our algorithm we have computed the symmetric
difference ε between I and its reconstruction I ′, that is the number of unequal
pixels normalized according to n×m. Different experimental sessions have been
carried out to validate the method on a database containing the following classes
(Fig. 6 depicts a couple of images):

1. hv-convex polyominoes;
2. non-convex/non-connected images [4].

To our knowledge, no standard database of images exists to compare different
discrete tomography reconstruction algorithms. Anyway, the hv-convex polyomi-
noes come from the same database of images already studied in [7], where some
of the methods reported in Sect. 2 have been considered. We have used 10 sub-
sets of 50 images, ranging from 10×10 to 100×100 pixels, with a linear step
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of 10 pixels. In order to calculate the best parameters that achieve a “satisfac-
tory” final error the algorithm was performed 9 times on each class of images, by
varying at each execution the number ng of generations and the size na of the
population. For each session, we computed the average error ε̄ and the number
N(ε̄) of solutions with a reconstruction error less than ε̄. Better results have been
obtained for images that satisfy strong topological and geometric constraints, as
in the case of the hv-convex polyominoes. Tables 1-2 refer to the last plots of
Figs. 7-8 and summarize the results for both classes of images, with 100×100
pixels. The bars represent the reconstruction error within the first and third
quartiles, the horizontal line inside each bar indicates the median reconstruction
error m(ε), while the horizontal lines outside each bar indicate the inter-quartile
range (small circles are outliers beyond that range). For example, 86% of the hv-
convex solutions obtained through 1000 individuals and 1500 generations have
an error ε less than the average error ε̄=0.480%.

One last note regards the execution time of the algorithm: it has been imple-
mented in (interpreted) MatLab language and requires about 10 seconds on a
standard personal computer per generation to elaborate an image with 100×100
pixels and 1000 individuals.

Fig. 6. A 100×100 hv-convex polyomino and a 100×100 non-convex/non-connected im-
age (left), extracted from our test database. Their reconstructed versions (right) have
errors equal to ε=0.36% and ε=4.87% respectively.

Table 1. HV-convex polyominoes with 100×100 pixels

na 500 500 500 750 750 750 1000 1000 1000
ng 500 1000 1500 500 1000 1500 500 1000 1500

m(ε) 0.015% 0.020% 0.005% 0.010% 0.005% 0.000% 0.005% 0.005% 0.000%
ε̄ 0.532% 0.530% 0.502% 0.536% 0.493% 0.524% 0.529% 0.521% 0.480%

N(ε̄) 84% 82% 84% 84% 84% 84% 84% 84% 86%

Table 2. NC images with 100×100 pixels

na 500 500 500 750 750 750 1000 1000 1000
ng 500 1000 1500 500 1000 1500 500 1000 1500

m(ε) 4.635% 3.840% 3.595% 3.920% 3.395% 3.700% 3.145% 3.305% 4.275%
ε̄ 8.097% 7.523% 7.425% 7.615% 7.388% 7.228% 7.569% 7.349% 7.449%

N(ε̄) 58% 58% 58% 58% 58% 58% 58% 58% 56%
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Fig. 7. Complete results for hv-convex polyominoes. The size of the images is indicated
on the title of the plots.
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Fig. 8. Complete results for non-convex/non-connected images. The size of the images
is indicated on the title of the plots.
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4 Conclusions and Further Works

Discrete tomography is an interesting field of research that often requires ad
hoc techniques to reconstruct binary images from a few of their projections.
At present, there is no real DT scanner yet, but we hope that it will become
a powerful tool for non-invasive medical imaging, when, for example, we are
interested in the presence or the absence of the contrast agent. Other fields of
applications include industrial quality control, the study of the internal atomic
distribution in crystallography and preliminary investigations for the restoration
of works of art.

We have introduced here a new method based on a memetic approach. An
extensive simulation has been performed on a database of hv-convex polyomi-
noes and non-convex/non-connected images with a variety of sizes. Moreover,
we verified the combination of different evolutionary operators, but we present
only the results gained by a particular set of crossover, mutation, compactness
and switch. Preliminary results show that the method is robust enough, though
images satisfying a priori knowledge, like the hv-convex polyomino constraint
returned better results.

Further experiments are on the way to complete the evaluation of our algo-
rithm on a bigger database of images, to improve the tuning of the parameters
(i.e. the number of generations ng and agents na). We intend to compare our
results with those obtained by other algorithms and to provide theoretical jus-
tifications about the robustness of our memetic approach.

We are going to generalize the method to take into account also specific models
of the images to study. For instance, it is desirable to introduce the shape of
organs to analyze real medical tests. In this case, we plan to extend the method
to three-dimensional volumes of data, considering also that successive slices are
usually similar one to each other.

Moreover, real projections in computerized tomography can be perturbed by
both quantization and instrumental noises, usually disregarded due to the huge
number of projections which distribute the error across the whole reconstructed
image. This assumption no longer holds in discrete tomography and in this case
the stability of our method still needs to be verified.
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Abstract. Biometrics-based personal identification is regarded as an effective 
method for automatically recognizing a person’s identity with a high 
confidence. This paper presents a novel approach for personal identification 
using weighting relative distance of key point scheme on hand images. In 
contrast with the existing approaches, this system extracts multimodal features, 
including hand shape and palmprint to facilitate the task of coarse-to-fine 
dynamic identification. Five hand geometrical features are used to guide the 
selection of a small set of similar candidate samples at the coarse level 
matching stage. In the fine level matching stage, the weighting relative distance 
of key point approach is proposed to extract palmprint texture.  

Keywords: personal identification, weighting key point, relative distance, 
coarse-to-fine. 

1   Introduction 

With the wide spread utilization of biometric identification systems, establishing the 
authenticity of biometric data itself has emerged as an important research issue. 
Numerous distinguishing traits have been used for personal identification including 
fingerprint, face, voice, iris, hand geometry and so on. Due to its stability and 
uniqueness, palmprint can be considered as one of the reliable means distinguishing a 
man from others, and it also can be easily integrated with the existing identification 
system to provide enhanced level of confidence in personal identification [5].  

Two kinds of biometric features can be extracted from the hand images; (i) palmprint 
features, which are composed of principal lines, wrinkles, minutiae, delta points, etc.. 
(ii) hand geometry features which include area/size of palm and length and width of 
fingers. How to extract these features is a key step for identification. The available 
approaches of personal recognition based on a palmprint image can be divided into three 
categories on the basis of the type of extracted features. These categories are as follows: 
the line-based approaches [14] and [16], [20], the texture-based approaches [4], [17] and 
[19] and appearance-based approaches [2], [6] and [15].  

                                                           
* Corresponding author. 
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A biometric system based on a single biometric characteristic is regarded as a 
unimodal system. However, a single physiological or behavioral characteristic of a 
person may fail to be sufficient for recognition. For this reason, multimodal biometric 
systems, which integrate two or more different biometric characteristics, are being 
developed to increase the accuracy of decisions [13]. 

In this paper, we propose a multimodal biometric personal identification system 
based on weighting relative distance of key point scheme for hand image, in which, both 
hand geometrical features and palmprint region of interest (ROI) features are employed 
and a coarse-to-fine dynamic identification strategy is adopted to implement a reliable 
and real time personal identification system. The block-diagram of the proposed system 
is shown in Fig. 1, where hand geometrical features and texture features are stored in 
Database1 and Database2, respectively. Firstly, hand image is captured by a flatbed 
scanner. Then, a series of preprocessing operations are employed for the segmentation 
of ROI and geometry features are also obtained in this process. The hand shape 
geometry features are first used for coarse-level identification. And the weighting 
relative distance of key point approach is applied to extract the features of ROI features 
for fine level identification. At decision stage, the Mahalanobis distance matching 
mechanism is employed to output the identification result.  

The paper is organized as follows. Section 2 introduces the image acquisition and 
the pre-processing. Section 3 describes the feature extraction based on weighting 
relative distance of key point method briefly. The process of identification is depicted 
in Section 4. The experimental results are reported in Section 5. Finally, the 
conclusions are summarized in Section 6. 

         

Fig. 1. Block diagram of the proposed identification 
system 

Fig. 2. Shows the process of handprint 
segmentation 
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2   Images Acquisition and Pre-processing 

The hand image is acquired with a desktop optical scanner at a resolution of 300 dpi. 
The size of the gray-scale image is 500500×  pixels. The right hands of users are 
placed on the scanner with the fingers spreading naturally. There are no pegs or other 
hand-position constrainers on the scanner. Our image acquisition setup is inherently 
simple and does not employ any special illumination. 

The extraction of ROI which contains palm-lines and creases is necessary for 
extracting palmprint features. The finger-webs location algorithm proposed by Lin [9] 
and [11] is used to obtain the seven key points (a-g), which is shown in Fig. 2.And the 
regions of interest 4321 RRRR are segmented and five hand shape features are also 

extracted in following process: 

1. Find the point h and k which are the intersection of lines dfdb, with hand 

contour. Then compute the midpoints 321 ,, mmm and 4m of lines dfdbhb ,, and fk . 

2. Find line AB which is parallel to line bf , and the distance L between 

line AB and line bf is 50 pixels. 

3. Form five length features by computing length of lines 

of 4321 ,,, gmemcmam and AB which will be considered as geometry features at the 

coarse level matching stage. Locate the top left corner 1R and top right corner 2R of 

ROI. As shown in Fig. 2, line 2fR is perpendicular to line bf and the length of 

line 2fR is 20 pixels. In addition, the length of line 1R 2R is 20 pixels longer than 

line bf . 

The sizes of the ROIs on the gray-scale image of the hand vary from hand image to 
hand image, and the ROIs lie in different directions. For this reason the sub-images 
defined by the ROIs are rotated to the same orientation and scaled to fixed size. The 
ROIs are normalized to 128128×  pixels in our work. 

3   Feature Extraction 

3.1   Weighting Relative Distance of Key Point 

Palmprint recognition has received increasing attention in recent years as a reliable 
approach to personal identification. A reliable feature extraction algorithm is critical 
to the performance of an automatic personal authentication system. In this paper we 
use the weighting relative distance of key points approach which is ameliorated based 
on Ref. [18] as feature extraction method. First of all, we use multi-channel 2-D 
Gabor filters to extract the key points of the palmprint image and then compute the 
relative distances of these key points to analyze the local feature structure of 
palmprint texture information. This method integrates the location information and 
the modality information of local palmprint texture at different scales. 
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In our method, we use multi-channel 2-D Gabor filters [1], [3], [7], [8], [10] and 
[12] to extract the texture information in various directions and different scales in ROI 
of palmprint. Each channel corresponds to a direction in a different scale.  

In ),( yx coordinate system, a 2-D Gabor filter in a certain channel can be given by 

''' )/()/()/(),,,( xTi22y2x eeTyxG
2222 πβαθ −−−=  (1) 

where α and β are the width and height (standard deviation) of a 2-D Gaussian 

function, respectively. 1−=i is the imaginary unit, T is the periods (or wavelength) 

in spatial domain, 'x and 'y are given by  
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where θ is the angle between is ),( yx coordinates system and ),( '' yx coordinates 

system. Fig. 3 (a-d) show the filtered images in some channels. 
As the symmetry of 2-D Gabor filters, we set four different values 

forθ : o0 , o45 , o90 and o135 . In order to extract texture information in different scales, 
the wavelength is set to four discrete values: 8 ,16 , 32 and 64 , so that there are 

1644 =× channels. After performing the filtering, we obtain 32 filtered images.  
In order to capture the local texture information of palmprint, we segment the 

filtered images into 16 sub-images. In each 3232×  sub-image, it is proper to regard 
the points with the largest coefficient as the feature points of the palmprint image. 
Here, we choose 64 feature points in every sub-image from each channel. Then the 
barycenter of these feature points is taken as the key point. 

Real part              

Imaginary part       
                                (a)                      (b)                      (c)                    (d) 

Fig. 3. (a), (b), (c), and (d) are the filtered images respectively in ,8=T  o90=θ ; ,16=T  
o45=θ ; ,32T = o0=θ ; ,64=T o135=θ  from the same person 
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Let ),( yxF be the absolute value of a filtered image, and 

)}(,),,(),,{( 64,642211 yxyxyxLFP K=  (3) 

is defined as the locations of feature point, then the location of key point ( , )kp kpx y in 

one of 16 channels can be given by 
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Because there are 32 filtered images (16 channels), we can get 32 key points in 
each sub-images. The location of these key points (LKP) in the jth sub-image is 
defined as 

},)(,,),(,),{(
32322211 , jKPKPjKPKPjKPKP yxyxyxLKP K= 16,2,1 K=j  (5) 

As above, we extract 512 )5121632( =× key points in the whole palmprint 

image. 
In our method, the location of key points may be easily affected by ROI localization, 

such as the variation of pressure and noise, but these factors have little influence on the 
relative distances of key points, so we make use of these relative distances as the 
palmprint feature vectors which are ready to be used in subsequent process.  

Before computing the relative distances of the key points, we should find the center 
of the key points. Because the channels of multi-channel 2-D Gabor filters are used to 
describe different scales and various directions texture information in ROI of 
palmprint, we add a weighting value on each key point which is extracted from the 
filtered image in different channels of multi-channel 2-D Gabor filters. By means of 
weighting, the performance of personal identification system is improved remarkably. 
Here, the center of the key points in the jth sub-image is defined as 
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Each channel of multi-channel 2-D Gabor filters contributes different effect-degree 
to the capability of describing local texture of palmprint. Based on this theory, we 
attempt to use weighting strategy on each key point. Because in this paper we regard 
the weighting relative distance of key points as feature vector, and a single key point 
can’t realize this algorithm, the weighting strategy is firstly assign weighted values to 
every four channels with man-made factor. Then we use Eq. (7) to compute the 
weighted value of each key point in the jth sub-image before we find out the center of 
key points in different channels. 

.4,3,2,1,4,3,2,1

,
4
==

××
=

qk

la10
w

qk

KPn  (7) 

Where 
nKPw is the weighted value of each key point.  When 64,32,16,8=T , ka is 

the weighted value in oooo 135,90,45,0=θ channels separately. 

When oooo 135,90,45,0=θ , ql is the weighted value in 64,32,16,8=T channels 

separately.  
The distance between the center of the key points ( , )jO x y  and each key point is 

defined as the relative distance. 

,))()(())()(()( 22 yOyxOxnD jKPjjKPj nn
−+−= .32,,2,1 K=n  (8) 

Therefore, every sub-image will obtain 32 relative distances, and the total number 
of relative distance is 512.  

3.2   Extraction of Hand Geometry Features 

The hand geometry features such as length and width of fingers, thickness and 
relative location of these features, form the other set to discriminate features from the 
hand images. Five hand shape length values are obtained in the pre-processing block. 

4   Identification 

4.1   Coarse-Level Identification 

Though the geometrical length features are not so discriminative but it can be used in 
coarse level matching to facilitate the system to work on a small candidates. 

If the distance is smaller than pre-defined threshold value, record the index number 
of the template into an index vector R for fine-level identification. 

4.2   Fine-Level Identification 

The index vector R has been recorded in coarse-level identification stage. In this 
section, the testing image will be further matched with the templates whose index 
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numbers are in R . The Mahalanobis distances, which are considered the most robust 
techniques defined in Eq. (9), are used to measure the similarity between query 
sample and the template at fine-level identification stage. 

)()()( 12
jijiij XXXXMd −′−= −Σ  

Where Σ is a covariance matrix whose size is pp × , ppij ×= )(σΣ .  

(9) 

5   Experimental Results 

In this section, our proposed approach is performed to evaluate the effectiveness and 
accuracy. The hand images database contains 1000 hand images collected from 100 
individuals’ right hand using our flatted scanner. The size of all images 
is 500500× and the resolution is 300 dip. Each image was processed by the 
procedures involving pre-processing, segmentation and feature extraction.  

5.1   The Experiment of Weighting Strategy 

In the system-design phase we performed several verification tests to find the 
optimum values for the system parameters. In this phase, the database includes 10 
different persons with 10 samples, and three samples of per person are considered as 
genuine samples and remaining seven images are used for impostor test. 

Multi-channel 2-D Gabor filters describes the texture information in various 
directions and different scales in ROI of palmprint. Each channel corresponds to a 
direction in a different scale. We attempt to choose the channels which can improve 
the performance of our system better. As the symmetry of 2-D Gabor filters, we set 

four different values for θ : o0 , o45 , o90 and o135 . In order to extract texture 
information in different scales, the wavelength is set to six discrete 
values: 2 , 4 , 8 ,16 , 32 and 64 , respectively. Because in this paper we regard the 
weighting relative distance of key points as feature vector, but a single key point in 
one channel can’t realize this algorithm, we do the experimentation, aimed at 
selecting better channels and assigning the weight, in every four channels. The 
experiment results are shown in Fig. 4 which shows distributions of intra-class and 
inter-class matching distance in different four channels. From the results, we can find 
that the distance between the intra-class and the inter-class distribution and the 
portion that overlaps between the intra-class and the inter-class varies following the 
wavelength transforms, at the same time, θ sets to four discrete values: 
o0 , o45 , o90 and o135  immovably. The distance between the intra-class and the inter-

class distribution is larger, and the portion that overlaps between the intra-class and 
the inter-class is smaller, the discrimination of the channel is better. Thus, we decide 
the wavelength is set to four values: 8 ,16 , 32 and 64 , andθ set four different values 

forθ : o0 , o45 , o90 and o135 based on experimental results. 
In selection of channel phase, we confirm the wavelengths and angles of Multi-

channel 2-D Gabor filters which can improve the accuracy of our proposed system  
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(a) ,2=T oooo 135,90,45,0=θ              (b) ,4=T oooo 135,90,45,0=θ  

 
(c) ,8=T oooo 135,90,45,0=θ               (d) ,16T = , oooo 135,90,45,0=θ  

 
(e) ,32=T oooo 135,90,45,0=θ              (f) ,64=T oooo 135,90,45,0=θ  
 

Fig. 4. Distributions of intra-class and inter-class distance, (a) is the distribution 
when ,2=T oooo 135,90,45,0=θ , (b)(c)(d)(e)(f) is the distribution when 64,32,16,8,4=T  

respectively 
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Table 1. The weighted values of all key points in jth sub-image 

o0=θ  o45=θ  o90=θ  o135=θ   

Real Imag Real Imag Real Imag Real Imag 

8=T  0.7 0.7 0.7 0.7 0.9 0.9 0.9 0.9 

16=T  0.6 0.6 0.6 0.6 0.8 0.8 0.8 0.8 

32=T  0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 

64=T  0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

distinctly. Nevertheless, each channel which is determined experimentally contributes 
different effect-degree to the capability of our multimodal biometric personal  
 

identification system. We assign the weight to every key point which belongs to 
different channels. When 64,32,16,8=T , the distributions of intra-class and inter-

class distance in oooo 135,90,45,0=θ channels respectively are also shown in the 

charts which are plotted statistically like Fig. 4.  
The weighting strategy in our multimodal biometric personal identification system 

is firstly assigned weighted values to every four channels with man-made factor. Then 
we compute the weighted value of key points in different channels. By means of 
weighting, the performance of personal identification system is improved remarkably, 
which is proved by experimental results. Table1 shows the weighted value of key 
points which are computed by weighting strategy in our system. 

5.2   Identification 

In the stage of identification, we use 60 people with 3 samples per person as training 
set. Furthermore, 60 people with another 7 samples per person and another 40 people 
with 10 samples per persons as testing set. Final results are usually quantified by false 
rejection rate ( RRF ) and false acceptation rate ( FAR) which are variable depending 
on the thresholdT which is determined experimentally. There is also a threshold 0T is 

selected for fine-level identification. More than one template may smaller than 0T at 

final outputs. We select the smallest distance between the query sample and template 
as the final identification result. If the number of output is zero, it illuminates that the 
query sample is an attacker. The accuracy of personal identification is measured by 
the correct match rate CMR  which is defined as: 

)),()((1 00 TFARTFRRCMR +−=  (10) 

The identification result based on different 0T in fine-level stage is list in Table 2 

and the corresponding ROC of FAR and FRR is depicted in Fig. 7(c).We use relative 
distance of key point, weighting relative distance of key point, coarse-to-fine dynamic 
identification method to test the validity of our system. Table 3 shows the comparison 
identification results. 
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Fig. 5. The distributions of RFR and FAR used the weighting relative distance of key point and 
geometrical feature method 

Table 2. FAR and RFR using different 0T  in Coarse-to-fine identification stage  

0T  (%)FRR  (%)FAR  

1.5 100 0 
1.8 83.24 0 
2.1 54.33 0 
2.4 29.47 0 
2.7 9.47 0 
2.9 5.26 0 
3.1 1.73 1.86 
3.4 0 100 

Table 3. Comparison of identification results 

method (%)FRR  (%)FAR  Recognition (%) 

Relative distance of key point 8.17 8.17 83.66 

Weighting key point 5.26 6.06 88.68 

Coarse-to-fine dynamic 
identification 

 
1.73 

 
1.86 

 
96.41 

When we use the proposed method to verify identity, the CMR can reach the 

value %41.96 , when 1.30 =T , %1.73=FRR , %1.86=FAR . 

6   Conclusions 

This paper proposes a novel feature extraction method for palmprint recognition 
based on matching the weighting relative distances of key points. The proposed 
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method has been tested and evaluated on our private databases. In the stage of 
experiment, relative distance of key point, weighting relative distance of key point, 
coarse-to-fine dynamic identification method are applied to multimodal biometric 
personal identification system to test the validity. The weighting strategy in proposed 
system improves the performance of personal identification system more than relative 
distance of key point method, which is shown in table 3.But failure identification may 
occur in some palmprint images, there are pseudo texture lines in the side of ROI 
because of the variation of pressure and tensility or sometimes hand moves while 
acquiring palmprint images, which is one reason that the proposed system can’t reach 
very highCMR . In addition, this system adopts a multimodal approach, rather than 
concentrating just on one of the hand area, which increases the reliability of decisions. 
Our system adopts a coarse-to-fine dynamic matching strategy, which implements the 
real-time of system. The experimental results show that the proposed multimodal 
personal identification approach based on weighting relative distance of key point is 
feasible and reliable. 
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Abstract. The aim of this paper is to study the reconstruction of binary images
from two projections using a priori images that are similar to the unknown image.
Reconstruction of images from a few projections is preferred to reduce radiation
hazards. It is well known that the problem of reconstructing images from a few
projections is ill-posed. To handle the ill-posedness of the problem, a priori in-
formation such as convexity, connectivity and periodicity are used to limit the
number of possible solutions. We use a priori images that are similar to the un-
known image, to reduce the class of images having the same two projections. The
a priori similar images may be obtained in many ways such as by considering
images of neighboring slices or images of the same slice, taken in previous time
instances. In this paper, we give a polynomial time algorithm to reconstruct bi-
nary image from two projections such that the reconstructed image is optimally
close to the a priori similar images. We obtain a solution to our problem by re-
ducing our problem to min cost integral max flow problem.

Keywords: binary matrix reconstruction, computed tomography, discrete
tomography, min cost integral max flow problem.

1 Introduction

Discrete Tomography (DT) is an emerging reconstruction technique that reconstructs
discrete images from a few projections of the images. As the Computed Tomography
requires hundreds of projections to reconstruct images of interior of objects, the object
is exposed to more X-ray energy, which causes some side effects such as cancer in med-
ical imaging and destruction of atomic structure in crystalline structure reconstruction.
As more projections require more X-ray energy to be transmitted into the object, one
of the ways to reduce radiation hazards is to reconstruct images from a few projections.
The area of discrete tomography is concerned about reconstruction of a discrete ob-
ject or its geometrical properties from its projections or some other information. This
has application in fields such as: image processing [12], statistical data security [6],
biplane angiography [10], graph theory, crystallography, medical imaging [4], neutron
imaging [8] etc. [5] gives the fundamentals related to this topic.
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Here we consider the problem of reconstructing bi-level image from its projections
along row and column, and a priori information namely a set of images that are similar
to the unknown image.

An important area where binary image reconstruction obtained is medical imag-
ing, in particular, Digital subtraction angiography [4]. In Digital subtraction angiog-
raphy, the reconstructed image is the difference between images acquired before and
after intra-arterial injection of radio-opaque contrast medium and hence if the differ-
ence of a few projections of those two images are given, binary image can be recon-
structed. Another area where binary image reconstruction obtained is crystallography.
Peter Schwander and Larry Shepp proposed a model that identifies each possible atom
location with a cell of integer lattice Z3 and the electron beams with lines parallel to
given direction. The value 1 in a cell of Z3 denotes the presence of atom in the corre-
sponding location of crystal and the value 0 in a cell of Z3 denotes the absence of atom
in the corresponding location of the crystal. The number of atoms that are present in the
line passing through the crystal defines the projection of the structure along the line [7].

The problem of reconstructing 3D-binary matrix is reduced to reconstructing 2D-
binary matrix. Reconstructing 2D-binary matrix was studied much before the emer-
gence of its practical application. In 1957 Ryser [11] and Gale [2] gave a necessary and
sufficient condition for a pair of vectors being the projections of binary matrices along
horizontal and vertical directions. The projections in horizontal and vertical directions
are equal to row and column sums of the matrix. They have also given necessary and
sufficient conditions for existence of unique 2D-binary matrix which has a given pair
of row sum and column sum. In general, the class of binary matrices having same
row and column sums is very large. Though the reconstructed matrix and the original
matrix have same projections, they may be very different. One of the main issues in
Discrete T omography is to reconstruct the object which is more close to the original
object with few projections only. One approach to reduce the class of possible solutions
is to use some a priori information about the objects. For instance, convex binary ma-
trices have been reconstructed uniquely from projections taken in some prescribed set
of four directions in [3]. An another approach is given in [9], where the class of binary
matrices having same projections is assumed to have some Gibs distribution. By using
this information, object which is close to the original unknown object is reconstructed.

In this paper, We consider the first approach, namely, a set of a priori images that
are similar to the unknown image, to limit the possible solutions of 2D-Binary images
having given projections. In practice, It is possible to obtain images that are similar to
unknown image. One such situation is that the images of the same slice taken in previous
time instances may be considered as similar images, and the another situation is that the
images of adjacent slices may be considered as similar images. As the patients who have
undergone diagnosis may need to undergo diagnosis periodically (more in case of CT-
Angiography), images taken in the previous time instances can be used to take images
at current instance.

In the next section, we give notations and definitions. In section 3, we give the algo-
rithm. In section 4, we give some results obtained by simulation studies. In section 5,
we briefly discuss the correctness and complexity of the proposed algorithm. . The paper
concludes with a brief remark in section 6.
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2 Notations and Definitions

Let A = (ai,j) and B = (bi,j) be two binary image of order m×n where 1 ≤ i ≤ m
and 1 ≤ j ≤ n. . The images A and B are said to be similar if

∑m
i=1

∑n
j=1 |ai,j−bi,j |

is small.
The row and column projections of A = (ai,j) are R = (r1, ..., rm) and C =

(c1, ..., cn) respectively, where ri =
∑n

j=1 ai,j and cj =
∑m

i=1 ai,j

Two integral vectors R = (r1, ..., rm) and C = (c1, ..., cn) are said to be consistent
if

∑m
i=1 ri =

∑n
j=1 cj . For binary matrices T and S of size m×n, we define |T −S| =

∑m
i=1

∑n
j=1 |T (i, j)− S(i, j)|

For two integral vectors R = (r1, ..., rm) and C = (c1, ..., cn), Γ(R,C) denotes the
class of all binary matrices having row sum R and column sum C.

3 Reconstruction Problem

Given row projection R = (ri), column projection C = (cj) and a set of images
S = (Sk) , where 1 ≤ k ≤ l, that are similar to unknown bi-level image A = (ai,j),
the goal is to obtain a bi-level image B = (bi,j) such that R and C are row and column
projections of B = (bi,j) respectively, and

B = arg[ min
T∈Γ(R,C)

l∑

k=1

(|T − Sk|)]

We construct directed network G for the given a priori image-set S and the projec-
tions R = (r1, r2, . . . , rm) and C = (c1, c2, . . . , cn) as follows:
G = (V, E, C′, C′′) be a weighted directed graph where
V = U ∪ W ∪ {s, t}
U = { ui | 1 ≤ i ≤ m}
W = { wj | 1 ≤ j ≤ n }
E = {(ui, wj) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {(s, ui) | 1 ≤ i ≤ m } ∪ {(wj , t)| 1 ≤ j ≤ n }

We define the cost associated with each edge as follows: For each 1 ≤ i ≤ m and
1 ≤ j ≤ n,
C′(ui, wj) = −∑m

k=1 Sk(i, j), C′(s, ui) = −1 and C′(wj , t) = −1
where s is the source and t is the sink.

We define the capacity associated with each edge as follows: For each 1 ≤ i ≤ m
and 1 ≤ j ≤ n,
C′′(ui, wj) = 1, C′′(s, ui) = ri and C′′(wj , t) = cj

For a binary matrix A = (ai,j) of size m×n, the set of all locations with pixel value
0 is denoted by A0 = {(i, j)|ai,j = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n}, and the set of all
locations with pixel value 1 is denoted by
A1 = {(i, j)|ai,j = 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n} .

Lemma 1. Let B and B′ be two binary matrices, having same row projection R and
column projection C. Let S = (Sk), where 1 ≤ k ≤ l, be the class of images that are
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similar to the unknown image whose row and column projections are also R and C.
Then

∑

(i,j)∈B′
0

l∑

k=1

Sk(i, j)−
∑

(i,j)∈B0

l∑

k=1

Sk(i, j)=
∑

(i,j)∈B1

l∑

k=1

Sk(i, j)−
∑

(i,j)∈B′
1

l∑

k=1

Sk(i, j)

Proof

From the definition of B0, B1, B
′
0 and B′

1, we get

∑

(i,j)∈B0

l∑

k=1

Sk(i, j) +
∑

(i,j)∈B1

l∑

k=1

Sk(i, j) =
m∑

i=1

n∑

j=1

l∑

k=1

Sk(i, j) (1)

∑

(i,j)∈B′
0

l∑

k=1

Sk(i, j) +
∑

(i,j)∈B′
1

l∑

k=1

Sk(i, j) =
m∑

i=1

n∑

j=1

l∑

k=1

Sk(i, j) (2)

From (1) and (2),

∑

(i,j)∈B′
0

l∑

k=1

Sk(i, j)−
∑

(i,j)∈B0

l∑

k=1

Sk(i, j)=
∑

(i,j)∈B1

l∑

k=1

Sk(i, j)−
∑

(i,j)∈B′
1

l∑

k=1

Sk(i, j)

Hence the Lemma.

Lemma 2. Let R and C be two integral vectors, S = (Sk), where 1 ≤ k ≤ l, be the
class of images. Let G be the network associated with R, C and S. Maximum-Flow f
of G has minimum cost iff

∑m
i=1

∑n
j=1 f(ui, wj)C(ui, wj) is minimum.

Proof

Cost of flow is
∑

e∈E

f(e)C(e) =
m∑

i=1

f(s, ui)C(s, ui) +
m∑

i=1

n∑

j=1

f(ui, wj)C(ui, wj) +
n∑

j=1

f(wj , t)C(wj , t)

As the index set for minimization is the set of all binary matrices having R and C as
projections, the first and second terms of right hand side of above equation are constants.
Hence

∑

e∈E

f(e)C(e) is min iff
m∑

i=1

n∑

j=1

f(ui, wj)C(ui, wj) is minimum

Hence the proof.

Theorem 1. : Let S = (Sk) , where 1 ≤ k ≤ l, be a set of binary images, and
R = (r1, r2, . . . , rm) and C = (c1, c2, . . . , cn) be two integral vectors. There
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exists a binary image B = (bi,j) such that row and column projections of B are R and
C respectively, and

B = arg[ min
T∈Γ(R,C)

l∑

k=1

(|T − Sk|)]

iff R and C are consistent and max flow value for the network G corresponds to
R, C and S is |f | = ∑m

i=1 ri, and cost of the flow is minimum.

Proof

=⇒:

Let R = (ri) and C = (ci) be two integral vectors, S = (Sk), where 1 ≤ k ≤ l, be a
set of binary images, and G be the network associated with R, C and S. Let us assume
that there exists a binary matrix B = (bi,j) such that row and column projections of B
are R and C respectively, and

B = arg[ min
T∈Γ(R,C)

l∑

k=1

(|T − Sk|)]

let us first prove that R and C are consistent and max flow value for the network G
corresponds to R, C and S is |f | = ∑m

i=1 ri.
Consider the following flow for the network G
For each 1 ≤ i ≤ m and 1 ≤ j ≤ n,
f(s, ui) = ri, f(wj , t) = cj ,
f(ui, wj) = 1 if bi,j = 1,
f(ui, wj) = 0 if bi,j = 0,
f(ui, s) = −f(s, ui), f(t, wj) = −f(wj , t),
f(wj , ui) = −f(ui, wj)
and f(e) = 0 for all e ∈ V × V such that f(e) is not defined above. The flow f has
the following properties:

Capacity constraint: f(e) ≤ C′′(e) for all e ∈ V × V . From our definition of f ,
capacity constraint is evident.

Skew symmetry: f(u, v) = −f(v, u) for all (u, v) ∈ V × V. Skew symmetry is also
evident from our definition of flow f .

Flow conservation: For all u ∈ V − {s, t} ∑
v∈V f(u, v) = 0. Since for each

1 ≤ i ≤ m, row i has ri 1′s, the number of outgoing edges with capacity 1 from ui is
ri. Hence total amount outgoing flow from ui is ri. The only incoming flow to vertex ui

is from the source, which is also ri. Since f is skew symmetric and the incoming flow is
same as the outgoing flow at node ui,

∑
v∈V f(ui, v) = 0 where 1 ≤ i ≤ m. Since

for each 1 ≤ j ≤ n, column j has cj 1′s, the number of incoming edges with capacity 1
to wj is cj . Hence total amount of the incoming flow from wj is cj . The only outgoing
flow from vertex wj is to the sink, which is also cj . Since f is skew symmetric and the
incoming flow is same as the outgoing flow at node wj ,

∑
v∈V f(wj , v) = 0 where

1 ≤ j ≤ n. Hence the flow conservation follows.
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The value of flow f is |f | =
∑

v∈V f(s, v) =
∑m

i=1 f(s, ui). Since |f | ≤∑
v∈V C′′(s, v) for any f and for our f , |f | =

∑
v∈V C(s, v), |f | =

∑m
i=1 ri is

the maximum flow. Since |f | = ∑m
i=1 f(s, ui) and |f | = ∑n

i=1 f(wj , t),
∑m

i=1 ri =∑n
j=1 cj . Hence R and C are consistent.
Let us now prove that the cost of the flow f is minimum.
Suppose f is not minimum, then there exists an another flow f ′ such that cost of f ′ is

less than f .ie
∑m

i=1

∑n
j=1 f ′(ui, wj)C′(ui, wj) <

∑m
i=1

∑n
j=1 f(ui, wj)C′(ui, wj).

Let us construct a binary matrix B′ as follows:

B′(i, j) = 1 if f ′(ui, wj) = 1.
B′(i, j) = 0 otherwise

Since f ′ is a flow of network G associated with R and C, the row and column projec-
tions of B′ are R and C respectively.

Claim:
l∑

k=1

(|B′ − Sk|) <

l∑

k=1

(|B − Sk|)

As cost of f ′ min ,

∑

(i,j)∈B′
1

l∑

k=1

Sk(i, j) >
∑

(i,j)∈B1

l∑

k=1

Sk(i, j)

=⇒
∑

(i,j)∈B1

l∑

k=1

Sk(i, j)−
∑

(i,j)∈B′
1

l∑

k=1

Sk(i, j) < 0

=⇒(
∑

(i,j)∈B′
0

l∑

k=1

Sk(i, j)−
∑

(i,j)∈B0

l∑

k=1

Sk(i, j))

+ (
∑

(i,j)∈B1

l∑

k=1

Sk(i, j)−
∑

(i,j)∈B′
1

l∑

k=1

Sk(i, j)) < 0 (By Lemma 1)

=⇒
∑

(i,j)∈B′
0

l∑

k=1

Sk(i, j) + (l
m∑

i=1

ri)−
∑

(i,j)∈B′
1

l∑

k=1

Sk(i, j)

<
∑

(i,j)∈B0

l∑

k=1

Sk(i, j) + (l
m∑

i=1

ri)−
∑

(i,j)∈B1

l∑

k=1

Sk(i, j)

=⇒
∑

(i,j)∈B′
0

l∑

k=1

|B′(i, j)− Sk(i, j)|+
∑

(i,j)∈B′
1

l∑

k=1

|B′(i, j)− Sk(i, j)|

<
∑

(i,j)∈B0

l∑

k=1

|B(i, j)− Sk(i, j)|+
∑

(i,j)∈B1

l∑

k=1

|B(i, j)− Sk(i, j)|

Hence the claim.
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Since the claim contradicts

B = arg[ min
T∈Γ(R,C)

l∑

k=1

(|T − Sk|)],

the cost of the flow f is minimum.

⇐=:
Let us assume that R and C are consistent and max flow value for the network G
corresponds to R, C and S is |f | = ∑m

i=1 ri, and cost of the flow is minimum.
Let us prove that there exists a binary matrix B = (bi,j) such that row and column

projections of B are R and C respectively, and

B = arg[ min
T∈Γ(R,C)

l∑

k=1

(|T − Sk|)]

Let us construct binary matrix B from flow as follows:
B(i, j) = 1 if f(ui, wj) = 1, B(i, j) = 0 otherwise
As the cost of flow is minimum,

m∑

i=1

n∑

j=1

f(ui, wj)C′(ui, wj) (3)

is min ( By Lemma 2 )
Since f is max-flow for G which is associated with R and C, and R and C are consis-
tent, the row and column projections of B are R and C.

Claim :B = arg[ min
T∈Γ(R,C)

l∑

k=1

(|T − Sk|)]

Suppose not, there exists B′ such that
l∑

k=1

|B′ − Sk| <
l∑

k=1

|B − Sk|

=⇒
∑

(i,j)∈B′
0

l∑

k=1

|B′(i, j)− Sk(i, j)|+
∑

(i,j)∈B′
1

l∑

k=1

|B′(i, j)− Sk(i, j)|

<
∑

(i,j)∈B0

l∑

k=1

|B(i, j)− Sk(i, j)|+
∑

(i,j)∈B1

l∑

k=1

|B(i, j)− Sk(i, j)|

=⇒
∑

(i,j)∈B′
0

l∑

k=1

Sk(i, j) + l
m∑

i=1

ri −
∑

(i,j)∈B′
1

l∑

k=1

Sk(i, j)

<
∑

(i,j)∈B0

l∑

k=1

Sk(i, j) + l

m∑

i=1

ri −
∑

(i,j)∈B1

l∑

k=1

Sk(i, j)
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=⇒(
∑

(i,j)∈B′
0

l∑

k=1

Sk(i, j)−
∑

(i,j)∈B0

l∑

k=1

Sk(i, j))

+ (
∑

(i,j)∈B1

l∑

k=1

Sk(i, j)−
∑

(i,j)∈B′
1

l∑

k=1

Sk(i, j)) < 0

=⇒(
∑

(i,j)∈B1

l∑

k=1

Sk(i, j)−
∑

(i,j)∈B′
1

l∑

k=1

Sk(i, j)) < 0 (By Lemma 1)

Let us construct flow f ′ as follows
f ′(ui, wj) = 1 if B′(i, j) = 1
f ′(ui, wj) = 0 otherwise
It is easy to verify that f ′ is a max-flow for the network.

m∑

i=1

n∑

j=1

f ′(ui, wj)C′(ui, wj) =
∑

(i,j)∈B′
1

l∑

k=1

−Sk(i, j)

(4)
m∑

i=1

n∑

j=1

f(ui, wj)C(ui, wj) =
∑

(i,j)∈B1

l∑

k=1

−Sk(i, j)

(5)

From (3), (4) and (5),
m∑

i=1

n∑

j=1

f ′(ui, wj)C′(ui, wj) <

m∑

i=1

n∑

j=1

f(ui, wj)C′(ui, wj)

which contradicts that the cost of f is minimum. Hence the claim.

Algorithm: Binary image reconstruction
Input: A set of images S =(Sk) and row and column projections R=(r1, r2, . . . , rm)
and C = (c1, c2, . . . , cn) of A
Output: Bi-level image B = (bi,j) such that R and C are the row and column projec-
tions of B = (bi,j) respectively, and

B = arg[ min
T∈Γ(R,C)

l∑

k=1

(|T − Sk|)]

Initialization: m := the number of components in R, n := the number of components
in C. For each 1 ≤ i ≤ m and 1 ≤ j ≤ n, bi,j := 0

Step 1: Compute cost matrix C′ = (c′i,j) where c′i,j = −∑l
k=1 Sk(i, j)

and 1 ≤ i ≤ m and 1 ≤ j ≤ n,

Step 2: Construct Net work using projections and cost matrix as given below

G = (V, E, C′, C′′) be a weighted directed graph where
V = U ∪ W ∪ {s, t}
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U = { ui | 1 ≤ i ≤ m}
W = { wj | 1 ≤ j ≤ n }
E = {(ui, wj) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {(s, ui) | 1 ≤ i ≤ m } ∪ {(wj , t)| 1 ≤ j ≤ n }
We define the cost associated with each edge as follows: For each 1 ≤ i ≤ m and

1 ≤ j ≤ n,
C′(ui, wj) = −ci,j , C′(s, ui) = −1 and C′(wj , t) = −1

We define the capacity associated with each edge as follows: For each 1 ≤ i ≤ m
and 1 ≤ j ≤ n,
C′′(ui, wj) = 1, C′′(s, ui) = ri and C′′(wj , t) = cj where s is the source and t is the
sink.

Step 3. Compute Min-cost Max-flow for the network constructed in step 2.

Step 4. Construct image from flow obtained in step 3 as follows For each 1 ≤ i ≤ m
and 1 ≤ j ≤ n, bi,j = 1 if flow from ui and wj is 1

4 Simulation Studies

We have taken a real image of a vascular system of size 64 × 64 (Fig 1. ) and created
artificial blocks in the blood vessels at random locations. A set of ten images is synthe-
sized from the real image by creating artificial blocks, and those images are considered
as similar images (Fig 2(a) through Fig 2(j) ). Another set of five images is synthe-
sized from the real image by creating artificial blocks at random locations, and they are
considered as test images (Fig 3(a). through Fig 3(e)). We considered each test image
as unknown image and computed row and column projections of each test image. We
reconstructed each test image without any error from its row and column projections
using those similar images we have considered. But, the reconstructed images are not
same as the unknown images(test images) when we considered some subsets of Fig
2(a) through Fig 2(j) as shown in the following table. We define the reconstruction er-
ror as |A − B| where A is the unknown image (test image) B is the reconstructed
image. It may be noted that A and B have same row and column projections. We have
shown some experimental results for the reconstruction of a test image namely Fig 3(a)
using various subsets of Fig 2(a through j). From the experimental results shown in
the table, we can infer that more the a priori images or closer the a priori image to the
unknown image lesser will be the reconstruction error. Note that when a priori images
Fig 2. b,f,h,j are considered separately, the reconstructed errors are 68, 76,50,208 pixels

Fig. 1. Real vascular image
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a. b. c. d. e.

f. g. h. i. j.

Fig. 2. The a priori images that are similar to the unknown image

a. b. c. d. e.

Fig. 3. The unknown images

respectively, but no error while all of them considered together. The error is 32 pixels
When Fig 2. f and j are considered together, and 8 pixels are erroneous while Fig 2. b,f,j
are considered together. It may also be noted that there is no reconstruction error when
Fig 2(d) alone is considered as Fig 2(d) is very close to the unknown image.

Experimental Results

Table 1. Reconstruction error for various set of a priori images

S error S error S error
{ a } 4 { i } 4 {a, b, c } 0
{ b } 68 { j } 208 {d, e, f } 0
{ c } 14 { a, b } 4 {g, h, i } 0
{ d } 0 { c, d } 0 {b, f, j } 8
{ e } 22 { e, f } 0 {b, f, h, j } 0
{ f } 76 { g, h } 0 {a, b, c, d, e } 0
{ g } 12 { i, j } 0 {f, g, h, i, j } 0
{ h } 50 { f, j } 32
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5 Correctness and Complexity

By Theorem 1, correctness is evident. The time complexity of Step 1 is O(mnl) where
m is number of rows , n is number of columns and l is number of similar images. As
Min-cost Max-flow can be solved in O(V 3log2V ) where V is the number of vertices in
the network, Step2 and Step 3 take O(V 3log2V ) where V = m + n + 2. Step 4 takes
O(mn). The dominant part of our algorithm is computing Min-cost Max-flow when l
is considered as constant. Hence the time complexity of our algorithm is O(V 3log2V )
where V = m + n + 2.

6 Conclusion

In this paper we have reconstructed a 2D-bi-level image from its two orthogonal pro-
jections using a priori images that are similar to the unknown image. 2D-bi-level image
reconstruction from two orthogonal projections has polynomial time algorithm [11],
2D-tri-level image reconstruction from two orthogonal projections is still open, 2D-
four-level image reconstruction from two orthogonal projection is NP-Complete [1].
The problem that we have solved is more complex than 2D-bi-level image recon-
struction from two orthogonal projections and less complex than 2D-tri-level image
reconstruction from two orthogonal projections. We implemented our algorithm and
compared the quality of reconstructed image by our algorithm with the quality of re-
constructed image by algorithm, which does not consider a priori similar images, given
in [11]. The reconstruction of 3D-bi-level image from two orthogonal projections with
a priori similar images can be done by slice-by-slice reconstruction using the proposed
algorithm. One of the possible areas in which our algorithm can be used is medical
imaging. Another area of application is crystallography. Our algorithm can be used
to reconstruct crystalline structure from two projections without damaging the crystal.
Though our algorithm always constructs an image whose orthogonal projections are the
same as the orthogonal projections of the unknown image, the reconstructed image may
be distorted from the unknown image if the similar images are not close to the unknown
image or the number of a priori images is very small.
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1 Université de Poitiers, SIC, Bâtiment SP2MI, F-86962 Futuroscope, France
dupas@sic.univ-poitiers.fr
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Abstract. The topological map is a model that represents 2D and 3D
images subdivision. It aims to allow the use of topological and geomet-
rical features of the subdivision in image processing operations. When
handling regions in an image, one of the main operation is the region
merging, for example in segmentation process. This paper presents two
algorithms of region merging in 3D topological maps: one local which
modifies locally the map around merged regions, and another one global
which runs through all the elements of the map. We study their com-
plexities and present experimental results to compare both approaches.

Keywords: Combinatorial maps, Intervoxel boundaries, Region
merging, Image segmentation.

1 Introduction

Region based segmentation consists in partitioning an image into connected sets
of pixels or voxels called regions. One of the approaches, derived from the split-
and-merge [9] methods and called bottom-up, begins with an over-partition of
the image, and decreases the number of regions using successive region merg-
ing operations. These algorithms require a model that describes images, and
operations onto these models like the region merging.

Many works have studied models representing partitions of an image. Topo-
logical data structures describe images as a set of elements and their adjacency
relations. The most famous example is the Region Adjacency Graph (RAG) [13]
which represents each region by a vertex, and where neighboring regions are
connected by an edge. But the RAG suffers from several drawbacks as it does
not represent multiple adjacency or makes no differences between inclusion and
adjacency relations. To solve these issues, the RAG model has been extended,
for instance in dual-graph structure to represent 2D images [11] or in topological
maps [1,2,5,8] used to represent 2D and 3D images.

The aim of our work is to provide image processing operations using 3D
topological maps. We need algorithms that maintain and update the information
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stored, like relations between regions (adjacency, inclusion, etc.). In a previous
work [7], a region merging method has been defined on 3D topological maps, but
it is limited to the merging of two adjacent regions.

In this paper, we present and compare two algorithms, one local and one
global, for region merging. The first one is dedicated to interactive processing of
3D topological maps as it aims to minimize the number of modifications of the
map while merging together a set of connected regions. The global algorithm is
designed for automated processing for example in segmentation operations. It
allows the merging of any number of regions by connected components. Some
experiments show that the two proposed algorithms behave as intended. The
local region merging is slower when used intensively contrary to the global region
merging.

In Sect. 2, we first present topological maps, which are combinatorial maps
verifying specific properties used to represent 3D images. Then, Sect. 3 stud-
ies the local approach of region merging in topological maps. We explain the
algorithm and give its complexity. In Sect. 4, we present the global approach.
Section 5 shows the experimentation results, and compares both approaches in
different cases. Lastly, we conclude and give some perspectives in Sect. 6.

2 Recalls on 3D Topological Maps

A 3D topological map is an extension of a combinatorial map used to represent a
3D image partition. Let us recall the notions on combinatorial maps, 3D images,
intervoxel elements and topological maps that are used in this work.

A combinatorial map is a mathematical model describing the subdivision of
a space, based on planar maps. A combinatorial map encodes all the cells of the
subdivision and all the incidence and adjacency relations between the different
cells, and so describe the topology of this space.

The single basic elements used in the definition of combinatorial maps are
called darts, and adjacency relations are defined onto darts. We call βi the rela-
tion between two darts that describes an adjacency between two i-dimensional
cells (see Fig. 1 B for one example of combinatorial map and [12] for more details
on maps and comparison with other combinatorial models). Intuitively, with this
model, the notion of cells is represented by a set of darts linked by specific βi

relations. For example, a face incident to a dart d is represented by the set of
darts accessible using any combination of β1 and β3 relations. Moreover, given
a dart d, which belongs to an i-cell c, we can find the i-cell adjacent to c along
the (i−1)-cell which contains d by using βi(d). For example, given a dart d that
belongs to a face f and a volume v, the volume adjacent to v along f is the
3-cell containing β3(d).

Let us now present some usual notions about image and intervoxels elements.
A voxel is a point of discrete space ZZ3 associated with a value which could be
a color or a gray level. A three dimensional image is a finite set of voxels. In
this work, combinatorial maps are used to represent voxel sets having the same
labeled value and that are 6-connected. The label of a voxel is given by a labeled
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Fig. 1. The different parts of the topological map used to represent an image. (A) 3D
image. (B) Minimal combinatorial map. (C) Intervoxel matrix (embedding). (D) Inclu-
sion tree of regions.

function l : ZZ3 → L that gives for each voxel its label (a value in the finite set
L). We speak about region for a maximal set of 6-connected voxel having the
same label.

To avoid particular process for the image border voxels, we consider an infinite
region R0 that surrounds the image. If a region Rj is completely surrounded by
a region Ri we say that Rj is included in Ri.

In the intervoxel framework [10], an image is considered as a subdivision of
a 3-dimensional space in a set of cells: voxels are the 3-cells, surfels the 2-cells
between two 3-cells, linels the 1-cells between two 2-cells and pointels the 0-cells
between two 1-cells (see example in Fig. 1 C where 2-cells, 1-cells and 0-cells are
drawn).

The topological map is a data structure used to represent the subdivision of
an image into regions. It is composed of three parts:

– a minimal combinatorial map representing the topology of the image;
– an intervoxel matrix used to retrieve geometrical information associated to

the combinatorial map. The intervoxel matrix is called the embedding of the
combinatorial map;

– an inclusion tree of regions.

Figure 1 presents an example of topological map. The 3D image, composed of
three regions plus the infinite region R0 (Fig. 1 A), is represented by the topo-
logical map which is divided in three parts labeled B, C and D. The minimal
combinatorial map extracted from this image is shown in Fig. 1 B. The embed-
ding of the map is represented in Fig. 1 C, and the inclusion tree of regions in
Fig. 1 D.

The combinatorial map allows the representation of all the incidence and
adjacency relations between cells of an object. In the topological map framework,
we use the combinatorial map as a topological representation of the partition of
an image in regions. Each face of the topological map is separating two adjacent
regions and two adjacent faces do not separate the same two regions. With these
rules, we ensure the minimality (in number of cells) of the topological map (see
[7,4] for more details on topological maps).

The intervoxel matrix is the embedding of the combinatorial map. Each
cell of the map is associated with intervoxel elements representing geometrical
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information of the cell. A face, in the combinatorial map, is embedded by a set
of surfels separating voxels of the two incident regions. The edges, which are the
border of faces, are represented by a set of linels. The vertices, which are the
border of edges, are embedded by pointels. Thus the intervoxel matrix allows
to retrieve the geometry of the labeled image represented by the combinatorial
map.

The inclusion tree of regions represents the inclusion relations. Each region
in the topological map is associated to a node in the inclusion tree. The nodes
are linked together by the inclusion relation previously defined. To link the tree
with the combinatorial map, each dart d of the map knows its belonging region
(called region(d)). Each region R knows one of its dart called representative dart
(called rep(R)). rep(R) has to belong to the external surface of R and its other
incident region R2, given by region(β3(rep(R))), has to be a smaller region than
R considering the sweeping order of the image voxels (i.e. R2 is found before R
when we run through the image with a scan line algorithm).

3 Local Region Merging

The objective of the local merging approach is to modify the topological map in
a local way to reflect the merging of the selected regions. As its a local operation,
we do not want to run through all the darts of the topological map. We also aim
to locally transform the inclusion tree of regions. Lastly, it is necessary to respect
the minimality property of the topological map and update the geometrical
embedding of the map.

3.1 Algorithm

The region merging algorithm takes in input a topological map M and a set S
of connected regions to merge. The algorithm modifies the topological map M
such as all the regions of S are merged together in the resulting region.

Algorithm 1 presents the local approach of the region merging operation. An
overview of the local process divides it into three main steps:

– initialize the main region and mark the internal faces (i.e. faces incident to
two regions that will be merged);

– update the inclusion tree to take into account the possible modifications of
the inclusion relations;

– update the combinatorial map and the embedding by removing internal faces
and simplifying their incident edges and vertices.

Before starting the merging process itself, we choose in set S a region, called
main region (line 1 of Algo. 1). Instead of creating a new region, we use the main
region as the resulting region of the merging algorithm. Thus, we choose the main
region so its representative dart respects the definition of the representative dart
(see Sect. 2) for the resulting region.
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Algorithm 1. Local approach of the region merging operation
Data: Topological map M ; Connected set of regions S
Result: Merge together all the regions of S in M.

Choose the main region among the region of S;1

foreach dart d belonging to regions of S in the map do2

if region(β3(d)) ∈ S then
Mark all the darts belonging to the face incident to d;

Update the inclusion tree;3

Remove all internal faces (previously marked);4

Simplify the cells incident to the removed faces;5

The next step is the marking of the internal faces between the regions of set
S. We run through the darts belonging to regions of S in the topological map
(line 2). Each dart d such as region(d) ∈ S and region(β3(d)) ∈ S is incident
to an internal face. We mark all the darts incident to the face incident to such a
dart. In order to check if a dart belongs to a region of set S in a constant time,
we use a second mark applied on regions that belong to S.

To update the inclusion tree (line 3) we remove the selected regions of the
tree and then we run through all the darts of the selected regions to find newly
internal surfaces. For each one, we build a new connected component of regions
in the inclusion tree.

The next step concerns the two other structures of the topological map: the
combinatorial map and its embedding, the intervoxel matrix. We want to remove
internal faces from the combinatorial map (line 4). This is achieved by using the
face-removal (defined in [6] like any other cell-removal operations used in this
work) on each internal face previously marked.

The last step of this operation is the map simplification (line 5). Indeed, the
removal of the internal faces modifies the degree of the incident edges. Degree two
edges are not minimal according to the constraints of the topological map: they
are removed with the edge-removal operation. If a degree-two edge is removed,
the degree of the two incident vertices changes, so they are simplified if needed.

When a cell is removed in the combinatorial map by using cell-removal opera-
tion, the intervoxel matrix is also modified in order to remove the corresponding
embedding. For instance, when a face (2-cell) is removed in the combinatorial
map, all the corresponding surfels are removed in the embedding.

3.2 Complexity

Now we are going to study the time complexity of the local region merging
algorithm presented in Algo. 1. The selection of the main region is achieved in
O(|S|) where |S| is the number of regions to merge. Checking the validity of the
representative dart is a constant time operation.

The loop marking internal faces process each dart belonging to the regions
of S exactly once. Testing if region(β3(d)) ∈ S is a constant time operation,
so this step has time complexity O(Dselected) where Dselected is the number of
darts belonging to the regions of S.
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Updating the inclusion tree is the most expensive operation regarding the
number of covered darts. To find new internal surfaces, we run through all the
darts belonging to selected regions. This step has complexity O(Dselected). If no
inclusion appears, Dincluded, the number of darts belonging to newly included
regions, is equal to zero. Otherwise all the included darts are covered. Thus this
operation has time complexity O(Dselected + Dincluded) and in the worst case,
when all regions are newly included in the resulting region, we cover the darts
of the whole topological map.

The cell-removal operation in the combinatorial map has linear time complex-
ity in number of darts incident to the corresponding cell. We only remove cells
belonging to the surface of the merged regions. Thus, the complexity is linear
in number of darts of the merged region: Dselected. Updating the embedding is
linear in the number of intervoxel elements representing the cells. The whole
process may be upper-bounded by Sremoved, the number of surfels removed dur-
ing the face-removal operation (because this number is always greater than the
number of linels and the number of pointels). This stage has time complexity
O(Dselected + Sremoved).

Algorithm 1 has time complexity O(Dselected + Dincluded + Sremoved). It can
be upper bounded by the number of darts and the number of surfels of the whole
topological map.

4 Global Region Merging

As a first approach of the region merging in the topological map, the local merge
does not provide an effective way to deal with multiple sets of connected regions
to merge. To overcome this drawback, we look for another approach allowing
several merges at the same time.

The principle of the global merging algorithm is to separate the modifications
of the topological map from the merging of regions. The aim is at first to handle
the regions at an high level, and then to translate the high level merging into an
effective one by removing cells from the topological map.

The first part of the algorithm concerns the symbolic merging of regions.
To handle the high level merging and the representation of region sets, we use
a disjoint-set forest [3] of regions. Disjoint-sets are used to represent multiple
sets. The main operations are the retrieval of the belonging set of an element
(find), and the merging of two sets (union). We use union-find trees to represent
disjoint-sets. In [14], R. Tarjan shows that the union and find operations can be
considered as constant time operations in practical cases.

During the symbolic merging, all regions in a same connected component are
merged together in the same union-find tree. Then the merge operation, defined
on disjoint-set forest, is used and some internal features of regions like number
of voxels, or mean color are propagated. The root of each tree in the disjoint-set
forest will be the resulting region for the merge of the underlying connected set
of regions. When all the sets have been processed, each root of the disjoint-set
forest is a remaining region of the merging process.
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Algorithm 2. Global approach of the region merging operation
Data: Topological map M ; Oracle function
Result: Merge all the regions by connected components according to Oracle

in M.

foreach dart d of M do1

if Oracle(region(d),region(β3(d))) then2

Merge the union-find trees of region(d) and region(β3(d));

Remove all internal faces;3

Simplify the cells incident to the removed faces;4

Rebuild the inclusion tree of regions;5

The second part of the algorithm removes all the internal faces. Then, we
simplify the topological map and rebuild the inclusion tree.

4.1 Algorithm

The global approach of the region merging algorithm takes in input a topological
map M and an oracle function that tells how regions have to be merged. The
algorithm modifies the topological map M such that all the connected regions
that have to be merged according to the oracle are actually merged.

Algorithm 2 presents the global approach of the region merging operation,
which is divided into three main steps:

– compute the disjoint-set forest of regions: this is the symbolic merging;
– remove the internal faces and simplify the incident cells;
– build the new inclusion tree.

The first step of the algorithm (line 1 of Algo. 2) concerns the symbolic merg-
ing. If the oracle merges r and its neighboring region r2 in a same connected
component, we merge the union-find trees containing the two regions. At the
end of the symbolic merging, since only neighboring regions have been merged,
each union-find tree represents a connected component of regions. The oracle
function could be for example a labelling function which merges regions having
the same label.

The next step (line 3) concerns the removal of the internal faces in the topolog-
ical map. This is the same process as the one used in the internal face removal for
the local approach, but without using a mark on internal faces. Indeed, a dart d
belongs to an internal face if find(region(d)) = find(region(β3(d))) (i.e. both
adjacent regions are in the same disjoint-set). We run through all the darts of
the topological map, and for each dart d validating the previous assertion, we
use the face-removal operation.

Then, we use the map simplification, presented in the local approach, to obtain
the minimal combinatorial map and its corresponding embedding (line 4).

The last step of this approach concerns the building of the new inclusion tree
of regions (line 5). This operation is processed with the same algorithm as the
one used during the extraction of the topological map (see [4] for more details).
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Contrary to the local approach, the inclusion tree is completely destroyed and
then rebuilt ; we do not modify the previous tree. This is justified because the
global approach is generally used to merge many regions, and in such a case it is
more expensive to update the tree than to rebuild it (see experiments in Sect. 5).

4.2 Complexity

The first step of the global region merging (presented in Algo. 2) is the symbolic
merging. The test line 2 of Algo. 2, which has constant time complexity using
a mark on regions, is performed on all the darts of the topological map. The
merging of the disjoint-sets containing the two implied regions is considered as
a constant time operation. This step has time complexity O(|D|) where |D| is
the number of darts of the topological map.

The complexity of the internal face removal is O(|D|) where |D| is the total
number of darts in the map. The map simplification algorithm and the updating
of the embedding are the same as the ones used in the local approach. So this
whole step, covering the face removals and the simplification of the map, has
complexity O(|D| + Sremoved) where Sremoved is the number of removed surfels
in the embedding. The complexity of the inclusion tree building is in O(|D|)
which give us the time complexity of Algo. 2 in O(|D| + Sremoved). We can
notice that the complexity of the two approaches is the same in the worst case,
but they have different processing times depending on the number of merged
regions.

5 Experiments and Analysis

In this section, we are interested in comparing the two approaches of the region
merging in topological maps. We study the processing time of the two methods.
All the following experiments use as input a same topological map representing
323 regions in a 323 voxels image (which means each voxel belongs to a different
region). In this topological map, we select several regions to merge, in order to
study some specific configurations. The goal of the experiments is to compare the
behaviour of both algorithms and thus showing the more interesting approach
in different cases. For this reason, we use small artificial images to facilitate the
comparison without depending on the content of the image.

5.1 Merging of a Connected Component of Regions

We have compared the two approaches when the selected regions form only one
connected component. We have introduced two protocols of experimentation in
this case. For the first one, we have merged an increasing number of regions using
both approaches. Figure 2 A shows the total processing time of both methods in
function of the number of darts belonging to merged regions. This shows that the
processing time of the local approach increases linearly with the number of darts.
The processing time of the global algorithm tends to decrease as the number of
merged regions increases. Indeed, during the merging operation, most of the
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Fig. 2. Processing time comparison of the two region merging approaches (processing
time given in seconds). (A) By the number of darts belonging to merged regions. (B) By
the number of darts belonging to newly included region.

darts are removed, and the simplification and the building of the inclusion tree
are cheaper when the number of darts is smaller. To conclude this experiment,
we can observe that the local approach is faster than the global one when the
number of merged regions remains small. On the contrary, the global approach
is faster when the number of regions is bigger.

Table 1 presents the processing times of the three different steps of both algo-
rithms in this experiment. The chosen steps are the same as the ones used in the
overview of both algorithms. We can observe, in the local approach results, that
each step takes an increasing time as the number of merged regions increases.
The global approach behave differently. The symbolic merging growth slowly,
but the face-removal, the simplification, and the building of the inclusion tree
take less time as the number of merged regions increases. These values show
the differences between the two approaches and explain the behavior of their
processing times.

The second experiment, presented in Fig. 2 B, compares the processing time
of the two methods when the number of included regions increases. We have

Table 1. Processing time of different steps of both approaches in function of the
number of darts belonging to merged regions

Merged darts 24576 196608 393216 589824 786432

Local approach

Initialization 0.008 0.052 0.100 0.148 0.196

Face-removal & simplification 0.028 0.156 0.208 0.316 0.388

Inclusion tree updating 0.012 0.120 0.304 0.480 0.616

Total 0.048 0.328 0.612 0.944 1.200

Global approach

Initialization 0.060 0.064 0.064 0.072 0.072

Face-removal & simplification 0.520 0.476 0.424 0.380 0.336

Inclusion tree building 0.288 0.228 0.152 0.084 0.008

Total 0.868 0.768 0.640 0.536 0.416
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Fig. 3. Processing time comparison of the two region merging approaches (time given
in seconds). (A) By the number of sets (size 2) merged. (B) By the size of the 256 sets
merged.

merged a constant number of regions (5768), but these regions are merged in
order to include a specified number of regions. This example shows the merging
of a small number of regions regarding to the topological map size. This explain
why the global approach is slower than the local one in this experiment. The
main point we can observe is that the processing time of the global approach
remains constant whereas in the local approach where it slowly increases. This is
due to the updating of the inclusion tree of regions which depends on the number
of included darts. The global approach does not depend on the configuration of
these included regions so its processing time is more reliable in general cases.

5.2 Merging of Several Connected Components of Regions

We have also compared the two approaches when the selected regions form sev-
eral connected components. We have studied the impact of the number of sets on
the merging process, as well as the impact of their size. We have used the same
kind of topological map representing 323 regions. In this image, we have selected
several regions that belongs to different connected components. To merge such
sets of connected regions with the local approach, we have used the local algo-
rithm on each set, and we have computed the total processing time. The same
result is obtained by giving to the global method the union of all the sets.

Firstly, we have merged an increasing number of sets of connected regions.
Each set contains two regions. Figure 3 A presents the processing time of the
two approaches in function of the number of merged sets. It shows that the
local approach processing time increases with the number of merged set whereas
the global method one decreases. The local approach behaves as expected since
it is the addition of the processing time of a single merge in the topological
map. The global approach behavior is explained, as previously, by the fact that
the number of remaining darts decreases and thus the map simplification cost
decreases. Figure 3 A shows that the global approach becomes more efficient
than the local one as the number of sets growth.

Secondly, we are looking into the influence of the set size on both approaches.
In the experiment, we have always merged 256 sets of regions, but we increase
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the size of each set from 2 to 64 regions. As in the previous experiment, the global
merging processing time decreases as the number of merged regions increases.
The processing time of the local approach is more expensive when the size of
the sets increases. Figure 3 B shows that the global merging operation becomes
more efficient than the local one when the size of the connected components
increases.

In all the experiments, we have a same conclusion. The local approach is better
when the number of selected regions is small and when the number of connected
components remains low. This is mainly the case when the region merging is
used in an interactive way or when we merge regions during a local process.
In the case of a more global process, we prefer to use the global approach of
the region merging as it will be generally more efficient and also have a more
predictable processing time in function of the image size.

6 Conclusion

In this paper, we have presented two different approaches of the region merging
operation in the 3D topological map. This work shows that the topological map
could be efficiently modified in order to represent the evolution of the represen-
tation of 3D images during an image processing operation.

We have detailed the local approach of the region merging in 3D topological
maps. It processes by applying local modifications to the three components of the
topological map: the combinatorial map, the intervoxel matrix and the inclusion
tree. The local method allows an efficient processing when the number of merged
regions remains small compared to the map size. The configuration of the selected
regions also influences the processing time of the region merging when there is
included regions. Another drawback of this approach is that the selected regions
to merge have to be in only one connected component. If it is not the case, the
local region merging have to be applied to each connected component.

To overcome issues of the local approach, we have proposed a second method
of region merging. It aims to merge by connected component any number of
regions by processing the whole map at once. As shown in the experiments, the
processing time does not change even if there are included regions or if there
are several connected components. On the contrary, the processing time of the
global approach tends to decrease when the number of merged regions increases.
This method gives a better way to merge regions in an automated way.

Thus, we have two region merging algorithms on 3D topological maps that
allow users to process regions interactively or automatically. These are the first
needed tools for image processing with the 3D topological maps.

The next step of our work is to use these operations in a real bottom-up
segmentation process. Our idea is to change the symbolic merging step of the
global approach to merge regions according to a criterion, and then applying
the last steps of the algorithm to produce the segmented image. We also want
to study the opposite operation of the merge called region splitting. The aim of
this operation is to divide a region into several smaller regions given a criterion,
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which may be a cut surface or an homogeneity measure. A splitting operation
will gives the ability to implement a split-and-merge segmentation in the 3D
topological map.
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Abstract. A major dilemma in edge detections is the choice of optimum 
threshold which lacks generality. The problem is further amplified by the 
presence of false edges in the image due to noise. Addressing this dilemma the 
paper presents a novel technique by exploiting scale correlation with in wavelet 
subband for two dimensional signals with a view to retain structural 
information. The image is decomposed by dyadic wavelet transform up to 4th 
level through multilevel wavelet decomposition. The detail coefficients in 
concordant bands are multiplied after interpolation and then synthesized. 
Quartic root of resultant product yields edge map of the image coupled with 
noise suppression. Experimental results reveal that the proposed algorithm 
outperforms the classical edge detectors for real, synthetic and noisy images 
while it is simpler to implement.  

Keywords: Edge detection, wavelet scale correlation, image denoising, 
multiresolution analysis, entropy reduction. 

1   Introduction 

Edge detection is a process of detecting areas of abrupt changes or discontinuities in 
some visual property [9]. It is a critical preprocessing step towards high-level image 
understanding. Edges are essentially surface discontinuities, thus they hold important 
feature information about objects in an image (e.g. size, shape and location) on which 
subsequent processing highly depends. In typical images, edges characterize object 
boundaries and are therefore useful for segmentation, registration, and identification 
of objects in a scene. Edge detection is an essential process in image analysis and 
many techniques have been proposed. Edge detection as a preprocessing stage is 
application dependent. On ground of different needs, distinct edges should be 
extracted. These factors make edge detection difficult in general. Edges can be 
determined from the image by processing directly in the spatial domain, or by 
transforming to a different domain.  

Edge is a local feature therefore, highpass filtering through Fourier Analysis is 
inadequate for edge detection due to its global nature. Roberts operator [4] gains in 
execution speed and loses fidelity because of its compact support of 2x2 
neighborhood. Consequently it is very sensitive to noise. Extending the mask of Sobel 
beyond 3x3 reduces the fidelity of the final edge image and increases computation 
time. Laplace operator [18],[16] is extremely sensitive to noise. Zero Crossing 
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detector looks for values in the Laplacian of Gaussian [14] of an image crossing the 
level, i.e. points where the Laplacian changes its sign. Such points often occur at 
edges in images but they also occur at places which are difficult to associate with 
edges. Zero crossings [11] always lie on closed contours so the output of the zero 
crossing detectors is usually a binary image with single pixel. Canny [3] uses different 
values of the parameter σ for edge detection with different precision. A thresholding 
operation is required to bring the resulting image to binary from the derivative 
operation. The main problem in edge thresholding is how to choose a proper threshold 
value so that a better edge image can be obtained. The selection of good threshold 
value is usually a disturbing problem because there is insignificant knowledge about 
the nature of edges in the image. Optimum threshold for Canny is not unique and 
varies for image to image and the noise model, therefore, lacks generality. Hybrid 
edge detector by cascading smoothing capabilities of wavelets [17] prior to classical 
operators improves the edge map of an image but choice of optimal wavelet filter 
depends upon noise model and lacks generality. Multiscale Canny edge detector is 
equivalent to detecting modulus maxima in a two dimensional dyadic wavelet 
transform [8]. The Lipschitz regularity of edge points is derived from the decay of 
wavelet modulus maxima across scales. Tony Lindeberg [6] defined edges as 
connected points in scale-space that allows the scale to vary along the edge. Fine 
scales are selected for sharp edges and coarse scales are selected for diffuse edges, 
such that an edge model constitutes a valid abstraction of the intensity profile across 
the edge. In [5] a statistical approach at multiple scales using data driven probability 
distributions is envisaged and results are evaluated using Chernoff information and 
conditional entropy. In [15] a multiscale edge detection algorithm that can fuse 
multiscale data to generate an edge map at the image pixel level has been presented. 
Many techniques have been proposed for multiscale edge detection, however there is 
less agreement on precisely how to combine the results at different scales. In this 
paper the detail coefficients of the concordant bands up to 4th level are thresholded to 
suppress noise, interpolated to 1st level of wavelet decomposition which recaptures the 
missing edge pixels, concordant bands are multiplied which strengthens the edge 
pixels as the structural details exist at all resolutions and then resultant detail bands 
are synthesized to give the edge map of the image. 

Edge images in real world applications are diverse. The edge map of the image can 
be visualized by humans, a preprocessing stage for segmentation/ registration or can 
be used in machine vision. Therefore, the figure of merit for edge detection [1] is also 
very challenging job and is applications dependent. The convolution kernels of the 
gradient or second derivative operators delocalize image edge map. The distinction 
between true edges and noise is an ill posed problem. Therefore conventional error 
measure based on measuring distance between original and the synthesized image is 
not advocated. In this paper Distance Transform (DT) [2],[13] has been used as 
similarity measure. Difference in DT of edge maps with respect to original image has 
been used as measure of error for estimation of peak signal to noise ratio (PSNR). The 
entropy of the edge map of the classical operators and the proposed algorithm are 
estimated which supports  psycho-visual comparison. 
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The rest of the paper is formulated such that section 2 develops the theory of 
wavelet transform. In section 3 the proposed algorithm has been discussed. Section 4 
highlights experimental results and section 5 concludes the paper. 

2   Wavelet Transform 

Wavelets are functions generated from one single function called mother wavelet by 
dilatations and translations in time domain. If mother wavelet is denoted by ψ(t) the 
other wavelets ψa,b(t)  can be represented as 

1
, | |

( )a b a

t b

a
ψ ψ=

−
 (1) 

where a and b are two arbitrary real numbers and represent dilations and translations 
respectively. Based on this definition of wavelets, the wavelet transform of a function 
f(t) is mathematically represented as 

,( , ) ( ) ( )a bW a b t f t dtψ
∞

−∞
= ∫  (2) 

 The inverse transform to reconstruct f(t) from W(a,b) is represented as 

,

1
( ) ( , ) ( )a bf t W a b t dadb

c
ψ

∞ ∞

−∞ −∞
= ∫ ∫  

where 
2| ( ) |

| |

w
C dw

w

ψ∞

−∞
= ∫  

  (3) 
 
 
 
 
  (4) 

and ψ (w) is the Fourier transform of mother wavelet ψ (t). 

It is prudent to discretize a and b and then represent discrete wavelets [12], [10] 
accordingly. The most popular approach of discretizing a and b is 

0
ma a=  (5) 

0 0
mb nb a=  (6) 

where m and n are integers. Hence DWT can be represented as 

2
, 0 0 0( ) ( )

m
m

m n t a a t nbψ ψ
− −= −  (7) 

The scaling function and the wavelets in one-dimensional space can be given by the 
following general formula: 
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Where, 
, ( )a b xϕ  is the family of scaling function at scale a and translated by b, 

, ( )a b xψ  is the family of wavelets at scale a and translated by b, φ and ψ are 0,0ϕ  and 

0,0ψ  respectively. 

Analysis of images with Quadrature Mirror Filtering (QMF) [12],[4],[7] has been 
exploited. With this methodology better approximations and details could be obtained 
using orthogonal and bi-orthogonal wavelets. The scaling function and the three 
wavelet functions for two dimensional signals are defined as 

φ( , ) φ( )φ( )x y x y=  (10) 

1( , ) φ( ) ( )x y x yψ ψ=  (11) 

2( , ) ( )φ( )x y x yψ ψ=  (12) 

3( , ) ( ) ( )x y x yψ ψ ψ=  (13) 

The horizontal ψ1 , diagonal ψ2 and vertical  ψ3  are nothing but the gradient of image 
along x, y and diagonal directions . It is however necessary condition for wavelets that 
the higher dimension functions should be separable into lower dimensions.  

3   Proposed Algorithm 

The above wavelet decomposition equations are classical to find the approximations 
and details in two dimensional signals which can be further exploited by wavelet scale 
correlation as following 

1. A pair of QMF is operated on the gray level image in vertical followed by 
horizontal direction. 

2. To maintain the size of the data at each level with respect to original image, 
decimation by two is applied after each filtering stage. 

3. High frequency details at level-1 are extracted and used to get the magnitude 
image of vertical and diagonal image. 

4. On the magnitude image so obtained thresholding is performed to obtain the 
edge map at level-1. 

5. Lowpass residue is taken for analysis to get second level decomposition. 
6. Steps 1, 2, 3 and 4 are performed to obtain edge detected image at level 2. 
7. Lowpass residue is carried over from previous level to iterate up to level-4. 
8. The edge details of different precision are obtained at each level of 

decomposition. Thresholding is taken as four times the mean value of the 
respective band coefficients.  

9. Due to downsampling by a factor of two at each stage, the lower resolution 
images are interpolated by nearest neighborhood up to wavelet level-1 
decomposition to facilitate matrix multiplications. 

10. Due to noise suppression and downsampling, a few edge pixels are also 
diminished which are automatically recaptured by interpolation. 
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11. All matrix multiplications are carried out at resolution of level-1. The 
synthesis of product bands is then re-interpolated to match the original size of 
the image. 

12. Quartic root of product filter is taken which yields the edge map of the image. 

The algorithm is an iterative process. Image being passed on to the following stage 
every time gets smoothed as high frequency details are extracted at every level. In this 
paper results have been compiled up to level-4 wavelet decomposition. The 
approximations are further decomposed and the concordant band coefficients are 
multiplied after interpolation as follows to extract the better approximation and detail 
coefficients along with noise rejection. 

A  

A

A

A  

H  

H

H  

H

V

V

V  

V  
D

D

D  

D   

Fig. 1. Wavelet decomposition up to level-4. In each stage A denotes approximations, H 
horizontal details, V vertical details and D diagonal details. 

1 2 3 4
h h h h h

v v v vD ψ ψ ψ ψ+ + + += ∗ ∗ ∗  (14) 

1 2 3 4
v v v v v

v v v vD ψ ψ ψ ψ+ + + += ∗ ∗ ∗  (15) 

1 2 3 4
d d d d d

v v v vD ψ ψ ψ ψ+ + + += ∗ ∗ ∗  (16) 

h v dD D D D= + +  (17) 

1 4E D=  (18) 
 

ψ represents detail coefficients band after interpolation to the resolution of level-1, φ 
represents the approximations band coefficients after interpolation to the resolution level-
1 , super script h, v and d  denotes horizontal, vertical and diagonal band coefficients and 
the subscripts denote the level of decomposition. Dh, Dv and Dd are the horizontal, 
vertical and diagonal detail coefficients respectively after multiplication of the 
interpolated concordant band coefficients. D is the augment of detail coefficients which 
corresponds to the gradient of image.  E is the resultant edge map of the image.  
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4   Experimental Results 

Edges detected by the proposed algorithm and conventional filters that include 
Robert, Prewitt, Sobel, Laplacian, Laplacian of Gaussian, Canny, Wavelet edge 
detectors and through multiresolution analysis using different orthogonal and bi-
orthogonal wavelets at different precision are shown in figure-2. The proposed edge 
detector using db1 has outperformed the conventional operators. The missing edge 
pixels as compared to other detectors are recaptured due to interpolation prior to 
multiplications of concordant bands. However the process of interpolation blurs the 
contours. Figure 3 depicts the same for low SNR image and reveals the high 
supremacy of proposed algorithm using db1 due to its compact support which favors 
local singularity detection. The threshold for edge detection in proposed algorithm is 
taken at default value which is four times the image mean value.  Adequate edge 
detection results were achieved even for noise variance as high as 0.4 (normalized). 
Db1 scale correlation up to 4th level gave the optimum detection. The edge blurring 
occurs with increase of the length of wavelet filter coefficients as depicted in figure-
3(aa) and figure-4(aa). Results for uniform noise induced in the image are trivial due 
to wavelets in built approximating and detailing characteristics. Further comparison of 
natural and synthetic images for edge detection for different noise models exports 
similar results and are found to be more significant for high resolution images. 

As the edges are delocalized, therefore legitimate mean square error does not 
correlate with psycho-visual comparison. 

2
2

1
|| ||RMSE I I

N
= −  (19) 

Where I is the original image and IR is the reconstructed image and N is the total 
number of pixels in the image. To cater for delocalization of the boundary pixels DT 
[13] of both edge detected images i.e. edges detected from original image and edges 
detected from its noisy version are taken with original image as similarity measure. 

The absolute difference in their DTs is taken as measure of error. PSNR based on 
the DT is evaluated as 

10
1 2

10log
| |

PSNR
DT DT

χ=
−

 (20) 

Where χ is the peak signal value which is 255 in our experiments. DT1 and DT2 are 
DTs of the edge detected image from original image and its noisy version 
respectively. 

Entropy of the edge maps are calculated as 

( ) ( ) ln ( )i i
i

H X P x P x=∑  (21) 

Where P(xi) is the probability of ith pixel value. The entropy of edge gives the amount 
of information in the image contrary to entropy reduction method for edge detection 
[19]. However its criteria supports within the family of wavelets.  The entropy of the 
image, reconstructed image and edge maps of building image with varying SNR are 
shown in figure-4 and figure-5. 
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         (a)                      (b)       (c)                           (d) 

 
         (e)                       (f)       (g)            (h) 

 
(i)                                     (j)       (k)            (l) 

 
          (m)         (n)       (o)           (p) 

 
           (q)                     (r)       (s)           (t) 

 
            (u)          (v)      (w)          (x) 

 
 (y)       (z)    (aa)        (bb)  
 
Fig. 2. Edges extracted by classical, wavelet and wavelet scale correlated filters. (a) building 
image used for extracting edges through (b) Fourier (c) Robert (d) Prewitt (e) Sobel 
(f)Laplacian (g) Log (h) Canny (i) DWT level-1 using Bior 3.7 (j) DWT level-2 using Bior 3.7 
(k) DWT level-3 using Bior 3.7 (l) DWT level-4 using Bior 3.7  (m) DWT level-1 using Haar 
(n) DWT level-2 using Haar (o) DWT level-3 using Haar (p)  DWT level-4 using Haar  (q) 
DWT level-1 using db2 (r) DWT level-2 using db2 (s) DWT level-3 using db2 (t) DWT level-4 
using db2 (u)DWT level-1 using db8 (v) DWT level-2 using db8 (w) DWT level-3 using db8 
(x) DWT level-4 using db8 (y) Wavelet Scale correlation up to level-4 using Haar (z) Wavelet 
Scale correlation up to level-4 using db2  (aa) Wavelet Scale correlation up to level-4 using db8 
(bb)Wavelet Scale correlation up to level-4 using Bior3.7 filters. 
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.  
(a)                                (b)                  (c)            (d) 

 
             (e)        (f)         (g)             (h) 

                   
(i)                                       (j)                   (k)             (l) 

 
         (m)                        (n)    (o)           (p) 

 
         (q)        (r)     (s)           (t) 

 
         (u)       (v)    (w)          (x) 

 
         (y)      (z)   (aa)        (bb) 
 
Fig. 3. Edges extracted by classical, wavelet and wavelet scale correlated filters. (a) Gaussian 
noise of 0 mean & .05 variance induced in building image used for extracting edges through  
(b)Fourier (c) Robert (d) Prewitt (e) Sobel (f) Laplacian (g) Log (h) Canny (i) DWT level-1 
using Bior 3.7 (j) DWT level-2 using Bior 3.7 (k) DWT level-3 using Bior 3.7 (l) DWT level-4 
using Bior 3.7  (m) DWT level-1 using Haar (n) DWT level-2 using Haar (o) DWT level-3 
using Haar (p) DWT level-4 using Haar  (q) DWT level-1 using db2 (r) DWT level-2 using db2 
(s) DWT level-3 using db2 (t) DWT level-4 using db2 (u) DWT level-1 using db8 (v) DWT 
level-2 using db8 (w) DWT level-3 using db8 (x) DWT level-4 using db8. (y) Wavelet Scale 
correlation up to level-4 using Haar (z) Wavelet Scale correlation up to level-4 using db2  (aa) 
Wavelet Scale correlation up to level-4 using db8 (bb) Wavelet Scale correlation up to level-4 
using Bior3.7 filters. 
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Experimental results reveal that it is intricate to distinguish information and noise 
contents in an image. However exploiting the correlation at different resolutions, 
structural details are retained coupled with noise suppression. 

Under the influence of Gaussian noise, the entropy of image increases strictly 
monotonically till it reaches its maxima after which it starts decreasing 
monotonically. The effects of mean and variance on the image entropy are eminent in 
figure 4(a). High noise saturates the intensity values and hides information contents of 
the image. The entropy maxima with increase of noise vary from image to image. 
More information an image has more abruptly the maxima will be reached and vice 
versa. Figure-4(b) depicts that the entropy of the reconstructed image falls abruptly 
with increase of mean but decreases with undulation with increase of noise variance. 
Figure 5 illustrates the entropy of the proposed algorithm. Sudden fall of entropy with 
increase of noise mean is trivial. The graphs do not give enough information in 
isolation and needs to be correlated with psycho-visual results. Correlating the figures 
3, 4, 5 and 6, the graphs support entropy reduction criteria [19] within the family of 
DWT for better edge detection. Figure 6 highlights this aspect more clearly by 
comparison of entropy under Gaussian noise of zero mean and varying variance for 
different edge detector that includes Robert, Prewitt, Sobel, Laplacian, Laplacian of 
Gaussian, Wavelet decomposition at level 1, level-2, level-3, level-4 and proposed 
algorithm using db1in figure-3.   

More information is preserved by DWT filters and fluctuates around 6 bits. 
Difference of entropies of spatial domain filters and wavelet filters is eminent in 
figure-6. DWT level-1 edge detector has the maximum entropy followed by level -2, 
level-3, level-4 and the proposed algorithm. Entropy of the proposed algorithm is 
decreased due to noise suppression as can be correlated to figure-3. In Spatial domain  
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Fig. 4. Entropy of the images under Gaussian noise of varying mean and variance (figure-2) 
when induced in the building image. (a) Entropy of the noisy image. (b) Entropy of 
reconstructed image after wavelet scale correlation.  
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Fig. 5. Entropy of proposed edge detector under Gaussian noise 
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Fig. 6. Entropy of edge detected images of figure 5 under Gaussian noise of zero mean and 
varying variance 

filters maximum entropy is preserved by Canny. The optimal results of Canny depend 
upon the selection of optimal threshold for edge detection, however, in this work all 
the experimental results are based on default threshold values. 
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Table 1. PSNR of Building image with wavelet scale correlation 

Wavelets Haar Db2 Db8 Bior3.7 
PSNR 50.991 39.1919 25.044 29.1158 
PSNR 
N(0,.05) 

18.6349 18.6185 18.618 18.618 

 

 
          (a)                                   (b)                                         (c)                            (d) 

 
          (e)                                    (f)                                   (g)                                (h) 

Fig. 7. Edges detected from Cameraman image and its noisy version Gaussian N(0,0.05).      (a) 
Cameraman image (b) Proposed edge detector (c) Sobel (d) Canny (e) Noisy Cameraman 
image (f) Proposed edge detector (g) Sobel (h) Canny. 

Entropy of spatial domain filters decrease strictly monotonically with increase of 
noise variance. PSNR of edge maps from image & it’s noisy version are evaluated for 
db1, db2, db8 and Bior-3.7 using error measure as defined by equation 20 and are 
tabulated in table-1 which aids psycho-visual comparison and confirms the optimality 
of the Haar wavelets for the proposed algorithm. 

Figure 7 compares the results of proposed algorithm with Canny and Sobel 
operator for Cameraman image and highlights its supremacy. 

5   Conclusion 

Edge detection using wavelet scale correlation has outperformed the existing edge 
detection techniques keeping default threshold values for all the edge operators. The 
algorithm is equally applicable to images with depleted signal to noise ratio where 
conventional filters fall short to give adequate edge map on default values. Numerous 
techniques exist in spatial domain and for multiscale edge detection which vary in terms 
of synthesis of final edge map. The interpolation in the proposed algorithm reinstates the 
weak edge pixels depleted in the edge map due to thresholding.  The algorithm is 
advocated for edge detection where noise model or noise intensity in the image either 
varies or not predictable prior to image processing. It works without the user’s interaction 
and can be elegantly cascaded in pre processing stage in segmentation/feature extraction 
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or matching. The reconstructed image through scale correlation gracefully suppresses 
noise, reduces image entropy and favors further processing in diverse applications such 
as image compression or multiple description coding. 
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